ADDITIONAL SUBSURFACE SOIL INVESTIGATION MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA (OCHCA CASE NO. 96UT32) (GID #T0605901972)

Prepared for:

Ms. Nicole Mammano MB Industries 1742 Clear Creek Drive Fullerton, CA 92833-1442

Prepared by:

FREY Environmental, Inc. 2817A Lafayette Avenue Newport Beach, California 92663-3715 (949) 723-1645

Project No.: 383-01

August 15, 2005

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1.0	INTRODUCTION	1
2.0	BACKGROUND 2.1 UNDERGROUND STORAGE TANK REMOVAL - 1996 2.2 SOIL AND GROUNDWATER INVESTIGATION - 1998 2.3 ADDITIONAL WELL INSTALLATION - 2000 2.4 REMEDIAL WELL INSTALLATION - 2003 2.5 VAPOR EXTRACTION TEST - 2003 2.6 CORRECTIVE ACTION PLAN AND FEASIBILITY STUDY - 2004 2.7 QUARTERLY GROUNDWATER MONITORING - 1998 through 2003	1
3.0	SITE SETTING 3.1 GEOLOGY 3.2 HYDROGEOLOGY 3.3 GROUNDWATER SUPPLY WELLS AND SURFACE WATER BODI 3.3.1 Groundwater Supply Wells 3.3.2 Surface Water Bodies	5 IES
4.0	OBJECTIVES	7
5.0	FIELD INVESTIGATION 5.1 PRE-FIELD ACTIVITIES 5.2 ADVANCEMENT AND SAMPLING OF DIRECT PUSH BORINGS Collection of Soil Samples 5.3 LABORATORY ANALYSES	7
6.0	RESULTS OF THE FIELD INVESTIGATION 6.1 SUBSURFACE CONDITIONS 6.2 LABORATORY RESULTS	8
7.0	EXTENT AND MASS OF PETROLEUM HYDROCARBONS IN SOII	L 9
8.0	DISCUSSION AND CONCLUSIONS	9
9.0	RECOMMENDATIONS	10
10.0	LIMITATIONS	10
	REFERENCES	12

TABLE OF CONTENTS (CON'T)

SECTION	TITLE PAGE
	LIST OF TABLES
1	SUMMARY SOIL SAMPLE CHEMICAL ANALYSES RESULTS
2	SUMMARY OF GROUNDWATER LEVELS AND CHEMICAL ANALYSIS RESULTS
3	CHEMICAL ANALYSES OF VAPOR SAMPLES
	LIST OF FIGURES
1	SITE LOCATION MAP
2	SITE SKETCH
3	SITE SKETCH SHOWING SOIL SAMPLE, SOIL BORING, GROUNDWATER
	MONITORING AND VAPOR EXTRACTION WELL LOCATIONS
4	SITE SKETCH SHOWING SUBSURFACE GEOLOGIC SECTION LOCATION
	A-A'
5	SUBSURFACE GEOLOGIC SECTION A-A'
6	SITE SKETCH SHOWING MAXIMUM TPH AND BENZENE
	CONCENTRATIONS IN SOIL SAMPLES COLLECTED ON OR AFTER
	AUGUST 21, 2003.
	LIST OF APPENDICES
A	FIELD PROCEDURES
В	BORING LOGS
\mathbf{C}	LABORATORY REPORTS
D	ESTIMATED MASS OF PETROLEUM HYDROCARBONS BENEATH THE SITE

1.0 INTRODUCTION

This report presents the results of additional subsurface soil investigation activities performed by FREY Environmental, Inc. (FREY) at the property located at 16808 South Harbor Boulevard, in Santa Ana, California (Site) (Figures 1 and 2). The work was performed in general accordance with our Corrective Action Plan (CAP) dated January 22, 2004. The CAP was approved by the Orange County Health Care Agency (OCHCA) in their letter dated March 3, 2004. Additionally, FREY submitted an addendum to the CAP dated March 1, 2005, which was approved by the OCHCA in their letter dated March 8, 2005.

2.0 BACKGROUND

2.1 UNDERGROUND STORAGE TANK REMOVAL - 1996

On July 22, 1996, the OCHCA witnessed the removal of one 1,000-gallon gasoline underground storage tank (UST) from the Site. The UST and related fueling appurtenances were removed by American Environmental Management (AEM), of Los Alamitos, California (AEM, 1996).

On July 22, 1996, five soil samples were collected from the former UST and fuel dispenser area. One soil sample, DS-3, was collected approximately 2 feet below ground surface (bgs) from the fuel dispensing area, and four soil samples (TS-1, TS-2, B-2, and SW-1) were collected inside the UST excavation cavity. TS-1 and TS-2 were collected at approximately 8 feet bgs from the north and south end of the UST cavity, respectively. B-2 was collected at approximately 12 feet bgs in the center of the UST cavity, and SW-1 was collected at approximately 12 feet bgs from the north end of the UST cavity. Soil sample locations and the reported approximate area of the UST excavation are shown on Figure 3.

Soil samples were analyzed for total petroleum hydrocarbons as gasoline (TPH) in accordance with EPA Method No. 8015M, and for benzene, toluene, ethylbenzene, total xylenes (BTEX) and methyl tert-butyl ether (MTBE) in general accordance with EPA Method No. 8020. Concentrations of TPH, BTEX, and MTBE were detected in all of the soil samples collected and analyzed from the Site, with exception of TPH in soil sample DS-3, and MTBE in soil samples DS-3 and B-2. The highest concentrations of TPH and benzene were detected in soil sample SW-1 at 3,550 milligrams per kilogram (mg/kg) and 340,000 micrograms per kilogram (µg/kg), respectively (AEM, 1996) (Table 1).

2.2 SOIL AND GROUNDWATER INVESTIGATION - 1998

On June 17, 1998, Sierra Geoscience, Inc. (SGI) advanced three borings in the area of the former UST (Figure 2). The borings (MW1 through MW3) were advanced to approximately 27 feet bgs using a hollow stem auger drill rig. Soil samples were collected from each boring at 5, 10, and 15-feet bgs.

FREY

Groundwater monitoring wells MW-1 through MW-3 were then installed in their respective boreholes with screen intervals extending from approximately 10 feet bgs to 25 feet bgs. Groundwater was encountered in each borehole at a depth of approximately 14 feet bgs (SGI, 1998). Collected soil samples were analyzed for TPH, BTEX and MTBE. TPH was detected in the majority of the soil samples collected from borings MW1 and MW2. The highest TPH concentration (47 mg/kg) was detected in the soil sample collected from boring MW1 at 5 feet bgs (MW1-5). Benzene was detected in soil samples MW1-5, MW1-10, and MW2-15 at concentrations of 256 µg/kg, 4,080 µg/kg, and 80 µg/kg, respectively. Benzene was not detected in any other samples collected and analyzed. Concentrations of TPH and BTEX were not detected in soil samples collected and analyzed from boring MW3. MTBE was not detected in any of the soil samples collected and analyzed from borings MW1 through MW3 (SGI, 1998)(Table 1).

On August 12, 1998, after the development and purging of groundwater monitoring wells MW-1 through MW-3, SGI collected groundwater samples from each groundwater monitoring well. Groundwater samples were analyzed for TPH/BTEX and MTBE, in general accordance with EPA Method Nos. 8015G/8020A, respectively. TPH and benzene were detected in the groundwater samples collected and analyzed from wells MW-1 and MW-2 at concentrations up to 2,640 micrograms per liter (μ g/l) and 57 μ g/l, respectively. TPH and benzene were not detected in the groundwater samples collected and analyzed from well MW-3. MTBE was not detected in the groundwater samples collected and analyzed from wells MW1 through MW3 (Table 2)(SGI, 1998).

2.3 ADDITIONAL WELL INSTALLATION - 2000

On January 14, 2000, SGI advanced one borehole (MW4) in the approximate center of the former UST cavity (Figure 3). MW4 was advanced to approximately 20 feet bgs. Soil samples were collected from the boring at 5 and 10 feet bgs. Groundwater monitoring well MW-4 was installed in the borehole and screened from approximately 5 feet bgs to 20 feet bgs (SGI, 2000).

Collected soil samples were analyzed for TPH, BTEX and MTBE. TPH and benzene were detected in soil sample MW4-5 (collected from boring MW4 at 5 feet bgs) at concentrations of 4,430 μ g/kg and 90.7 μ g/kg, respectfully. Concentrations of TPH and benzene were not detected in soil sample MW4-10 (Table 1). Concentrations of MTBE were not detected in the soil samples collected and analyzed from boring MW4 (SGI, 2000).

On February 8, 2000, after the development and purging of groundwater monitoring well MW-4, SGI collected groundwater samples from groundwater monitoring wells MW-1 through MW-4. Groundwater samples were analyzed for TPH/BTEX and MTBE, in general accordance with EPA Method Nos. 8015G/8020A, respectively. TPH, benzene (except in well MW-3) and MTBE were detected in the groundwater samples collected and analyzed from wells MW-1 through MW-4 at concentrations up to $2,320~\mu g/l$, $28.9~\mu g/l$, and $9.7~\mu g/l$, respectively (Table 2)(SGI, 2000).

2.4 REMEDIAL WELL INSTALLATION - 2003

On August 21, 2003, FREY Environmental, Inc. (FREY) drilled three borings (VEW1 through VEW3) at the locations shown on Figure 3. Subsurface materials encountered in borings VEW1 through VEW3 consisted of silty clay from just below the ground surface to approximately 8 feet bgs and poorly graded fine sand from approximately 8 feet bgs to the bottom of each boring. Soil samples were collected from each boring at 5 and 10 feet bgs. Vapor extraction wells VEW1 through VEW3 were installed in their respective boreholes and constructed of two-inch diameter, schedule 40 PVC blank and screened casing. The screened casing for wells VEW1 through VEW3 extended from approximately 5 feet to 9 feet bgs.

Soil samples collected from borings VEW1 through VEW3 were analyzed for TPH in general accordance with EPA Method No. 8015M, and for BTEX and fuel oxygenates in general accordance with EPA Method No. 8260B. TPH, benzene, and fuel oxygenates were not detected above the laboratory detection limits in any of the soil samples collected and analyzed during this investigation (Table 1) (FREY, 2003).

2.5 VAPOR EXTRACTION TEST - 2003

On September 16, 2003, FREY conducted two vapor extraction tests (VETs) designated as Test 1 and Test 2, utilizing vapor extraction wells VEW2 and VEW1, respectively. The VETs were conducted to assess the yield of petroleum hydrocarbons and fuel oxygenate vapor concentrations of each extraction well, to estimate the radius of influence of each extraction well, and to estimate the permeability of subsurface soils with respect to the flow of soil gas (pneumatic permeability). Each test was conducted by increasing the vacuum/flow rate to the extraction well at distinct intervals, or steps (FREY, 2003a).

Based on the results of Tests 1 and 2, it was concluded that soil vapor extraction appears to be a feasible method for the removal of petroleum hydrocarbons from subsurface soils at the Site. The results indicated that subsurface vapors can be extracted from subsurface soils through two inch diameter vapor extraction wells at flows of approximately 21 to 37 scfm (Test 1) and 17 to 28 scfm (Test 2), with corresponding vacuums of approximately 25 to 75 inches of water column. The radius of influence derived from observed data collected during Tests 1 and 2 was estimated to be 20 feet (FREY, 2003a).

TPH and BTEX were detected in all the vapor samples collected and analyzed as part of the VETs. Fuel oxygenates were not detected in the vapor samples collected and analyzed as part of the VETs (Table 3). Based on the laboratory results TPH and benzene concentrations in soil vapor from the extraction wells increased during the course of Tests 1 and 2 when extracting from wells VEW2 and VEW1, respectively. It is estimated that approximately 3 pounds (0.5 gallon) of petroleum hydrocarbons were removed from subsurface soils during the conduct of Tests 1 and 2 (FREY, 2003a).

2.6 CORRECTIVE ACTION PLAN AND FEASIBILITY STUDY - 2004

FREY prepared a remedial feasibility study and corrective action plan following the conclusion of feasibility testing at the Site. In the feasibility study, FREY discounted the use of in-situ soil vapor extraction as a viable remedial alternative at the Site. FREY also discussed the projected cost and effectiveness of soil excavation with augmented bioremediation to reduce concentrations of petroleum hydrocarbons in soil and groundwater beneath the Site (FREY, 2004).

Based on the conclusions reached in the feasibility study, FREY selected soil excavation with augmented bioremediation as the most efficient and cost-effective method(s) for the reduction of petroleum hydrocarbons in soil and groundwater beneath the Site (FREY, 2004). FREY had estimated, for the purpose of the feasibility study, that an excavation with the dimensions of 20 feet long by 15 feet wide by 10 feet deep would be required for the removal of petroleum hydrocarbon impacted soil. This excavation is estimated to generate approximately 110 cubic yards (173 tons) of soil from the Site. Prior to excavation, FREY recommended the advancement of borings to better define the area of petroleum hydrocarbon impacted soil.

It is anticipated that the excavation can be dug approximately 1 foot below the watertable. It is not anticipated that groundwater will be pumped out of the excavation. The excavation will be backfilled with crushed rock or equivalent to approximately 6 feet bgs to bridge the groundwater table. Imported sand backfill soil and clean soils previously excavated from the excavation will be used to backfill the remainder of the excavation.

Prior to the placement of crushed rock, ORC (a time released oxygen compound material) will be placed at the base of the excavation below the water table. The purpose of placement of ORC is to remediate petroleum hydrocarbons that may be released from the soil matrix to groundwater during excavation activities.

2.7 QUARTERLY GROUNDWATER MONITORING - 1998 through 2005

Twelve groundwater monitoring and sampling events have been conducted since August 12, 1998. The most recent sampling event was conducted by FREY on June 27, 2005.

Depth to groundwater ranged from 7.92 feet below the top of casing (toc) to 8.48 feet toc during the first bi-annual 2005 groundwater monitoring and sampling event conducted on June 27, 2005. Groundwater elevations ranged from 41.66 feet above mean sea level (msl) in groundwater monitoring well MW-1 to 41.72 feet msl in groundwater monitoring wells MW-3 and MW-4. The direction of groundwater flow during this sampling event was estimated to be generally toward the south at an approximate gradient of 0.001 feet/foot (FREY, 2005).

Historically, Concentrations of TPH, BTEX and MTBE were not detected at or above the laboratory detection limits, or were detected in relatively low concentrations, in groundwater samples collected and analyzed from wells MW-1 through MW-4 between February 22, 2002, and December 30, 2004.

On June 27, 2005, during the most recent bi-annual groundwater monitoring event, TPH were detected in groundwater samples collected and analyzed from well MW-1 at a concentration of 230 ug/l. Benzene was detected at a concentration of 0.61 ug/l in groundwater samples collected from well MW-4 (FREY, 2005). Historical groundwater levels and chemical analyses results have been summarized in Table 2.

3.0 SITE SETTING

The Site is located in the City of Santa Ana, at an approximate elevation of 50 feet above mean sea level (Topo, 2000). The Site is currently a roofing material supply yard and occupies an approximate 1.5 acre parcel of land. The ground surface at the Site is relatively flat-lying and consists mostly of asphalt (Figure 2).

3.1 GEOLOGY

The Site is located approximately 2 ¼ mile north of the Newport Mesa and lies within the Orange County portion of the Los Angeles/Orange County Coastal Plain. The Orange County Coastal Plain is bordered on the north and east by the foothills of the Santa Ana Mountains, on the south by the San Joaquin Hills and on the west by the Pacific Ocean. The central and northern portions of the Orange County Coastal Plain consist of structurally downfolded strata of Upper Pleistocene and older age, that form a broad synclinal trough. The trough includes successively permeable and impermeable strata, that reach a depth of up to 20,000 feet near the Anaheim/Orange area (OCWD, 1982).

The Upper Pleistocene and older unconsolidated deposits consist predominantly of marine and lagoonal sediments that include interbedded silts and clays with occasional lenses of sand and gravel. These deposits overlie a thick sequence of Late Cretaceous to Upper Pleistocene age semiconsolidated sedimentary rocks and basement units (OCWD, 1984).

The Upper Pleistocene and older formations are overlain in the region by Recent alluvium, derived from the surrounding hills and sediments transported by the Santa Ana River and Santiago Creek. Recent deposits attain a maximum thickness of approximately 100 feet in the Site area, and consist of sands with interbedded gravels, silts and clays (OCWD, 1984). Based on observations made during previous well installation activities, the upper 30 feet of soil beneath the Site was observed to be predominantly fine to coarse grained sands with occasional silty sands.

3.2 HYDROLOGY

The Site is located in the East Coastal Plain Hydrologic Subarea, of the Lower Santa Ana River Hydrologic Area, within the Santa Ana River Hydrologic Unit (801.11). The water within Unit 801.11 is reported to be of beneficial use for municipal, agricultural, industrial process supply, and industrial service supply (RWQCB, 1995).

3.3 GROUNDWATER SUPPLY WELLS AND SURFACE WATER BODIES

3.3.1 Groundwater Supply Wells

The Irvine Ranch Water District (IRWD) maintains and operates several domestic water supply wells in the Site area. Wells located within the Irvine Ranch Well Field (IRWF) designated as IRWF 16 & 17 are both located within 1 mile of the Site. Well IRWF 16 is located approximately 3,250 feet southeast of the Site. The static depth to water in well IRWF 16 was 17.5 feet bgs as measured in April 1996. Well IRWF 17 is located approximately 3,050 feet east of the Site. The static depth to water in well IRWF 17 was 19 feet bgs as measured in May 1994 (IRWD, 2001).

SGI reported that a well is located at 3420 West Fordham Avenue in the City of Santa Ana. This location is approximately 1,800 feet east-southeast of the Site. Depth to water in the well was 8 feet bgs in 1990 (SGI, 1998). No additional information could be obtained regarding this well. An undesignated groundwater supply well was identified by FREY personnel on September 16, 2003, during the conduct of the VET described in Section 2.6. The well is located approximately 65 feet southeast of groundwater monitoring well MW-1 (Figure 2). The well did not appear to be in use on September 16, 2003. FREY contacted the Orange County Water District (OCWD) for additional information about the undesignated well. The OCWD has a listing for an active industrial groundwater supply well designated as "MB-SA" in their database. No additional information regarding the MB-SA well was available (OCWD, 2003). The undesignated well location, presumed to be industrial groundwater supply well MB-SA, is shown on Figures 1 & 2.

3.3.2 Surface Water Bodies

The nearest surface water body to the Site is the Santa Ana River which borders the Site to the east. The reported location of the former UST at the Site is approximately 200 feet west of the Santa Ana River. The Santa Ana River flows to the southwest in the Site vicinity (TOPO, 2000). No other surface water bodies exist within a 1 mile radius of the Site.

4.0 OBJECTIVES

The objectives of this investigation were to more definitively and accurately assess the lateral and vertical extent of petroleum hydrocarbons in soil in order to proceed with the excavation of the impacted soil as proposed in the CAP dated January 22, 2004.

5.0 FIELD INVESTIGATION

All activities related to this subsurface investigation were conducted under the supervision of a State of Catifornia Certified Engineering Geologist in accordance with accepted engineering practice and protocol.

5.1 PRE-FIELD ACTIVITIES

FREY personnel visited the Site on March 16, 2005 and marked the proposed boring locations. FREY obtained underground service alert number A761097 prior to the conduct of drilling activities.

5.2 ADVANCEMENT AND SAMPLING OF DIRECT PUSH BORINGS

FREY personnel oversaw the advancement of soil borings B1 through B7 on March 22, 2005, in the locations illustrated on Figure 2. FREY manually excavated each borehole to 4-feet bgs to locate and avoid subsurface obstructions. Soil borings B1 through B7 were advanced to final depths between 14 and 15 feet bgs, with a Geoprobe 5400 direct push drill rig. Boring B1 was advanced to the southeast of the former UST. Boring B2 was advanced to the southwest of the former UST. Boring B3 was advanced to the northwest of the former UST. Boring B5 was advanced to the northeast of the former UST. Boring B6 was advanced to the east of the former UST. Boring B7 was advanced in the approximate location of the former UST.

5.2.1 Collection of Soil Samples

Soil samples were collected at depths of 5, 10 and 15 feet bgs from borings B2, B3, B4, and B7. Soil samples were collected at depths of 5, 10, 12 and 14 feet bgs from borings B1 and B5, and 5, 8, 10 and 15 feet bgs from boring B6. Groundwater was encountered at approximately 10 feet bgs during the drilling of the soil borings on March 22, 2005.

Soil samples collected from borings B1, B6 and B7 exhibited some visual evidence of the presence of petroleum hydrocarbon, and had slight to strong petroleum hydrocarbon odors detected. Soil samples were screened in the field for undifferentiated volatile organic compounds (UVOCs) using an organic vapor analyzer as described in Appendix A.

Field procedures used in the advancement of borings and collection of soil samples are presented in Appendix A. Boring logs, and explanations regarding the format, terms, and soil classification system used to describe the soil conditions are presented in Appendix B.

5.3 LABORATORY ANALYSES

Soil samples collected from borings B1 through B7 were analyzed for TPH-g in general accordance with EPA Method No. 8015M, and for BTEX and fuel oxygenates in general accordance with EPA Method No. 8260B.

6.0 RESULTS OF THE FIELD INVESTIGATION

6.1 SUBSURFACE CONDITIONS

In general, subsurface soils encountered during the advancement of borings B1 through B7 consisted predominantly of clay from below the gravel surface to approximately 8 to 12 feet bgs, where fine grained sand or silt was encountered to the bottom of the borings. A subsurface geologic section line is shown on Figure 3 and a geologic section is presented as Figure 4. An iso-concentration map of benzene in soil at 5 to 10 feet bgs is shown on Figure 5. Groundwater was encountered in the borings advanced on March 22, 2005, at approximately 11 feet bgs.

Soil lithologies encountered at the Site during drilling operations are depicted on the boring logs included in Appendix B.

Evidence of the presence of UVOCs was observed in borings B1, B6 and B7. During drilling operations slight petroleum hydrocarbon odors were observed in boring B1, strong to mild petroleum hydrocarbon odors were observed in boring B6 and no strong petroleum hydrocarbon odors were observed in boring B7.

6.2 LABORATORY RESULTS

TPH-g and BTEX were detected in some of the soil samples collected and analyzed from borings B1 through B7 on March 22, 2005.

- TPHg was detected in six of the soil samples collected and analyzed on March 22, 2005, at concentrations ranging from 0.53 to 41 mg/kg(B6-8).
- Benzene was detected in four of the soil samples collected and analyzed on March 22, 2005, at concentrations ranging from 25 to 330 ug/kg (B1-10).

• Fuel oxygenates (including MTBE and TBA) were not detected in any of the soil samples collected and analyzed on March 22, 2005.

Soil sample analytical results have been summarized in Table 1. Laboratory analytical and quality control/assurance reports have been attached in Appendix C. Soil samples were analyzed by Calscience Environmental Laboratories, Inc., a certified hazardous waste testing laboratory based in Garden Grove, California.

7.0 EXTENT AND MASS OF PETROLEUM HYDROCARBONS IN SOIL

Based on a review of the laboratory soil sample data collected during this investigation and previous investigations as summarized in Table 1, and review of boring logs, FREY has estimated that petroleum hydrocarbon impacted soil is present over an area with approximate dimensions of 35 feet by 13 feet by 5 feet in thickness. The volume is estimated to be equivalent to about 84 cubic yards (126 tons) of soil.

The remaining mass of petroleum hydrocarbons in subsurface soils at the Site is estimated to be approximately 3.73 pounds (0.62 gallons). This mass estimate is based on laboratory results of historical soil samples collected during previous investigations since August 21, 2003 (Table 1). Calculations for the estimated mass of petroleum hydrocarbons remaining in subsurface soils beneath the Site are included in Appendix D.

8.0 DISCUSSION AND CONCLUSIONS

Based on the data collected during this investigation and previous investigations, the lateral and vertical extent of petroleum hydrocarbons have been better defined. However, based on the recent investigation it appears that the lateral extent of petroleum hydrocarbons in soil have not been defined in the southeast direction, hydrogeologically downgradient from boring B1 and B6. It appears that the petroleum hydrocarbon impacted soil zone occurs over the approximate five foot interval near the water table and extends from the former UST excavation in the hydrogeologic downgradient direction.

Based on the current (on and since August 21, 2003) detectable concentrations of TPHg and BTEX in soil in comparison to those concentrations detected in samples collected prior to that date and the non-detectable concentrations of TPHg and BTEX in groundwater samples it would appear as though significant natural attenuation of petroleum hydrocarbons occurred since the USTs were removed and soil samples were collected and analyzed on July 22, 1996. It should be pointed out that three of the four groundwater monitoring wells are screened below the water table and accordingly the groundwater analytical data for those wells may not be representative of the condition of the water and the occurrence of petroleum hydrocarbons in the groundwater in the first few feet of water.

Based on the current estimated mass of petroleum hydrocarbons in soil of 15.6 lbs using data collected on and since August 21, 2003, it is questionable if remedial excavation of petroleum hydrocarbon impacted soil is warranted. It is reasonable to estimate that the process of natural attenuation in soil and soil cleanup objectives can be achieved without active remediation.

9.0 RECOMMENDATIONS

Based on the discussion and conclusions as presented herein, FREY recommends that the excavation of petroleum hydrocarbon impacted soil as defined by recent investigations conducted on and since August 21, 2003 be postponed as it may not be warranted. Further evaluation and definition of the plume of TPHg and BTEX in soil and groundwater is however needed to determine if active remediation should be implemented. Additional borings should be advanced near borings B1 and B6 and southeast of these locations. Shallow screened wells with screen intervals of 5 to 15 feet should be installed in selected borings. These borings and wells will be utilized to define the plume and finalize the assessment.

Quarterly groundwater monitoring should be implemented upon completion of the new monitoring wells. A decision should be made subsequent to the completion of two quarters of monitoring whether remedial excavation as proposed in the CAP should be implemented or the conditions be allowed to naturally attenuate.

10.0 LIMITATIONS

The judgements described in this report are professional opinions based solely within the limits of the scope of work authorized, and pertain to conditions judged to be present or applicable at the time the work was performed. Future conditions may differ from those described herein, and this report is not intended for future evaluations of this Site unless an update is conducted by a consultant familiar with environmental assessments.

This report was compiled partially from information supplied to FREY Environmental, Inc. from outside sources, other information that is in the public domain and a visual inspection of the property. FREY Environmental, Inc. makes no warranty as to the accuracy of statements made by others, which may be contained in this report, nor are any other warranties or guarantees, expressed or implied, included or intended by the report, except that it has been prepared in accordance with the current accepted practices and standards consistent with the level of care and skill exercised under similar circumstances by other professional consultants or firms performing similar services.

Site conditions may change with time as the result of natural alterations or man-made changes on this or adjacent properties. Future environmental investigations conducted at the Site may reveal site conditions not indicated in the data reviewed by FREY Environmental, Inc. Additionally, changes in standards or regulations applicable to the Site may occur. The findings of this report may be partially or wholly invalidated by changes of which FREY Environmental, Inc. is not aware or has not had the opportunity to evaluate.

Environmental assessments provide an additional source on information regarding the environmental conditions of a particular property or facility. The report to the Client is a professional opinion and judgement, dependent upon FREY's knowledge and information obtained during the course of performance of the services.

Sincerely,
FREY Environm

Joe Filey Principal Certific

Engineering Geolo

CEG #1500

Josh Moeller Staff Geologist

REFERENCES

- AEM (American Environmental Management), 1996, Underground Storage Tank Closure Report, for 16830 S. Harbor Boulevard, Santa Ana, California, dated August 26, 1996.
- FREY, (FREY Environmental, Inc.), 2003, Remedial Well Installation, 16808 South Harbor Boulevard, Santa Ana, California, dated September 17, 2003
- -----, 2003, Vapor Extraction Testing, MB Industries, 16808 South Harbor Boulevard, Santa Ana, California, dated October 15, 2003.
- -----, 2005, First Bi-Annual 2005 Groundwater Monitoring Well Monitoring and Sampling Report and Status Update, 16808 South Harbor Boulevard, Santa Ana, California, dated July 19, 2005.
- IRWD (Irvine Ranch Water District), 2001, Domestic Supply Well Database, revised December 18, 2001.
- OCWD (Orange County Water District), 1982, Talbert Barrier status report, July 1979-June 1982, dated November 1982.
- -----, 1984, Groundwater management, Irvine area, Orange County, California.
- -----, 2003, Production Well Information Database, WRMS RPT #:3049 Page: 1, dated September 24, 2003.
- RWQCB (Regional Water Quality Control Board Santa Ana Region), 1995, Water Quality Control Plan: Santa Ana River Basin (8).
- SGI (Sierra Geoscience, Inc.), 1998, Report of Phase II Environmental Site Assessment and Installation of Groundwater Monitoring Wells, MB Industries, 16830 S. Harbor Boulevard, Santa Ana, California, dated September 14, 1998.
- ----, 2000, Report of Installation of Groundwater Monitoring Well and Quarterly Groundwater Monitoring, MB Industries, 16830 S. Harbor Boulevard, Santa Ana, California, dated February 29, 2000.
- Topo, 2000, Computer program based on USGS 7.5-minute California topographic quadrangle.

TABLE

FREY Environmental, Inc.

SUMMARY SOIL SAMPLE CHEMICAL ANALYSES RESULTS 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA TABLE 1

H	Date	Sample Depth [1]	TPH [2] (m9/k9)	Benzene [3] (ug/kg)	Toluene [3] (ug/kg)	Ethyl- benzene [3] (ug/kg)	Total Xylenes [3] (ug/kg)	MTBE [3] (ug/kg)
Sample ID Sampled	Samples (AEM)	1	/g .g					
OST Allu Dispellaci	Samples (marri							
T-7-	07/22/1996	∞	1,300	45,500	209,000	112,000	670,000	10,200
TS-2	07/22/1996	∞	2,123	68,500	308,000	147,700	935,000	12,100
DS-3	07/22/1996	2	N	107	150	173	1,630	ON 04
SW-1	07/22/1996	12	3,550	340,000	1,073,000	306,000	1,590,000	49,700
B-2	07/22/1996	12	720	16,000	68,500	28,400	18/,000	Q.
Sierra Geoscience, Inc.	Inc.							
WW1-5	06/17/1998	. \$	47	256	912	640	4,920	Q S
MW1-10	06/17/1998	10	40	4,080	1,480	1,280	6,700	
MW1-15	06/17/1998	15	QN QN	QN	Q	Q Z	QN	Š
WW2-5	06/17/1998	5	20	N QN	120	216	1,400	2 5
MW2-10	06/17/1998	10	Q	N N	= ;	Q S	14 010 010	2 5
MW2-15	06/17/1998	15	21	80	673	348	2,010	Ì
1411/2 5	06/17/1998	v	QX	QN QN	Q.	ND	QN	QN !
MW3-10	06/17/1998	10	ND	ND	Q !	2 9	2 5	2 2
MW3-15	06/17/1998	15	ND	QN	Q	Q Z	N N	Ž
3 1777	01/14/2000	v	4 430	90.7	217	168	517	Q
MW4-10	01/14/2000	01	Q	QN	QN	7.6	QN	QX
27 - 11 - 11								

FREY Environmental, Inc.

Table 1 - Page 2

TABLE 1
SUMMARY SOIL SAMPLE CHEMICAL ANALYSES RESULTS
16808 SOUTH HARBOR BOULEVARD
SANTA ANA, CALIFORNIA

Sample ID	Date Sampled	Sample Depth [1] (feet)	TPH [2] (mg/kg)	Benzene [3] (ug/kg)	Toluene [3] (ug/kg)	Ethyl- benzene [3] (ug/kg)	Total Xylenes [3] (ug/kg)	MTBE [3] (ug/kg)
rey Environmental, Inc.	l, Inc.							
VEW1-5	08/21/2003	'n	ND<0.50	ND<5	5.1	ND<5	ND<5	ND<5
VEW1-10	08/21/2003	10	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
VEW2.5	08/21/2003	v	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
VEW2-10	08/21/2003	10	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
VEW2 5	08/21/2003	v	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
VEW3-10	08/21/2003	10	ND<0.50	ND<5	5.5	ND<5	ND<5	ND<5
ī	3000/00/00	v	v v	7.1	330	620	1.340	ND<5.0
BI-5	03/22/2003	ر د	5.7	330	100	640	1,990	ND<5.0
B1-10 B1-17	03/22/2003	27	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
B1-14	03/22/2005	14	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
C	3000/00/00	v	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
6-29 50.10	03/22/2003	J =	05.0>QN	S ON S S ON	ND<5	ND<5	ND<5	ND<5
B2-10 B2-15	03/22/2005	15	ND<0.50	ND S	ND<5	ND<5	ND<5	ND<5
								!
B3-5	03/22/2005	5	ND<0.50	ND<5	ND<5	ND<5	SD<	SOS SOS
B3-10	03/22/2005	10	ND<0.50	ND<5	ND<5	ND<5	SON S	SON Y
B3-15	03/22/2005	15	ND<0.50	ND<5	ND<5	ND<5	ND<5	SON SON
5 70	\$000/00/80	v	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
B4-10	03/22/2002	. 0	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
B4-15	03/22/2005	15	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
9 6 6	5000/00/20	v	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
0-50 10	002/27/00	. <u>-</u>	05 0>UN	\$>CN \$>CN	ND<5	ND<5	ND<5	ND<5
B3-10	03/22/2003	10	05.0>UN	SON SON	S S S	ND<5	ND<5	ND<5
B5-14	03/22/2005	2 4	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
3								

SUMMARY SOIL SAMPLE CHEMICAL ANALYSES RESULTS 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA TABLE 1

Sample ID	Date Sampled	Sample Depth [1] (feet)	TPH [2] (mg/kg)	Benzene [3] (ug/kg)	Toluene [3] (ug/kg)	benzene [3] (ug/kg)	Xylenes [3] (ug/kg)	MTBE [3] (ug/kg)
8 7 Q	5000/20/20	œ	14	ND<500	6.700	15,000	88,000	ND<500
D6 10	03/27/20	o <u>S</u>	: "	110	9/	260	1,670	ND<5.0
B6-15	03/22/2005	5 5	0.53	ND<5	ND<5	ND<5	ND<5	ND<5
C1-07		2						
B7_5	5000/00/20	'	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5
B7-10	03/22/2005	01	2.9	25	ND<5.0	29	440	ND<5
B7-15	03/22/2005	15	ND<0.50	ND<5	ND<5	ND<5	ND<5	ND<5

Notes:

[1] Depths measured in feet below ground surface.

[2] Analyzed in general accordance with EPA Method No. 8015M modified for gasoline or diesel. [3] Analyzed in general accordance with EPA Method No.

ND = Not detected at the laboratory detection limit.

mg/kg = milligrams per kilogram ug/kg = micrograms per kilogram

Table 2
Summary of Groundwater Levels and Chemical Analyses Results
16808 South Harbor Boulevard
Santa Ana, California

										Fthvl.	Total	
Well No.	Well Elevation [1]	Screen Interval	Date Sampled	Depth to Groundwater	Groundwater Elevation	Free Product Thickness	TPH [2]	Benzene [3]	Toluene [3]	benzene [3]	Xylenes [3] μg/L	MTBE[3] µg/L
	(ft-msl)	(teet)		(Teet-10C)	(11-11131)	(222)	ı					9
	9	30.01	06/12/1008	8 70	41.61	N QN	296	0.9	ND<0.5	1.3	36	ND<10
MW-I	49.90	10-23	06/17/1990	60.0	40.88	QN	0.89	1.9	1.7	6.0	1.4	23.2
			08/03/1999	20.6	00:01	S	50	2.7	ND<0.5	ND<0.5	ND<1.0	8.5
			05/08/2000	9.30	40.00	2	ND<100	ND<1	ND<1	ND<5	ND<1	ND<1
			02/27/2002	9.21	40.07	<u> </u>	ND<100	1.3	ND<1	ND<5	ND<1	ND<1
			05/20/2002	9.34	40.30	2 5	ND<100	ND<1	ND<5	ND<5	ND<5	ND<1
			09/19/2002	9.45 35.0	40.45	2 5	ND<100	ND<	ND<5	ND<5	ND<5	3.2
			12/13/2002	9.35	40.33	2 2	ND<100	ND<	ND<5	ND<5	ND<5	ND<1
			05/0//2003	9.03	75.07	S	70	ND<1	ND<5	ND<5	ND<5	ND<1
			10/21/2003	9.33	40.04	2 5	ND<100	0.58	ND<1.0	ND<1.0	ND<1.0	1.3
			04/28/2004	9.03	40.65	2 5	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
			12/30/2004	8.90	41.00	2 5	230	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
			06/27/2005	8.24	41.00	Q.	3					
	:	•	00/12/1000	7 60	41 74	CZ	2.640	57	9.2	2.3	149	ND<10
MW-2	49.62	c7-0I	08/17/1998	09.7	40.93	E	334	16.8	3.2	2.0	26.8	35.9
			08/05/80	0.03	40.73	E S	28	2.8	ND<0.5	9.0	9.9	9.7
			05/08/7000	0.09	40.73	2	ND<100	ND<1	ND<1	2.73	ND<1	1.8
			0.02/22/20	0.91	40.71	2 5	ND<100	ND<1	ND<1	ND<5	ND<1	2.2
			05/20/2005	9.00	40.36	e S	ND<100	ND<1	ND<5	ND<5	ND<5	1.7
			09/19/2002	9.10	40.56	E	ND<100	ND<1	ND<5	ND<5	ND<5	3.6
			12/13/2002	9.00	40.50	2 5	ND<100	ND<1	ND<5	ND<5	ND<5	ND<1
			05/07/2003	8./3	40.67	2 5	63	ND<1	ND<5	ND<5	ND<5	ND<1
			10/21/2003	10.6 27.0	40.87	E	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	4.1
			04/28/2004	0.73	40.67	2 2	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
			12/30/2004	8.59	41.03	2 5	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
			06/27/2005	767	41./0	Š			!			

Summary of Groundwater Levels and Chemical Analyses Results 16808 South Harbor Boulevard Table 2

Santa Ana, California

Flevation 1 Streen Data Sampled Groundwater Citerion Cites C			ļ		Denth to	Croundwotor	Free Product				Ethyl-		
(Hr-ms) (Heet)	_	Well Elevation [1]	Screen Interval	Date Sampled	Groundwater	Elevation (ft-mel)	Thickness		Benzene [3]	Toluene [3]	benzene [3]	Xylenes [3] μg/L	MTBE[3] µg/L
49.72 10-25 08/12/1998 8.04 41.68 ND ND ND 08/05/1999 8.78 40.94 ND		(ft-msl)	(teet)		(1001-1001)	(111-111)		l				ŀ	
49.72 10-22 06/12/1939 8.78 40.94 ND ND ND 10-23 06/12/1939 8.78 40.94 ND ND ND 10-20 06/12/1939 8.78 40.94 ND ND ND 10-20 06/12/1939 ND ND ND ND 10-0.05 02/202/2002 9.12 40.60 ND ND 40.74 ND ND ND ND ND ND ND 05/20/2002 9.13 40.49 ND ND ND ND ND ND ND ND 12/13/2002 9.13 40.49 ND ND ND ND ND ND ND 04/28/2004 8.81 40.92 ND ND ND ND ND ND ND 12/30/2004 8.81 40.91 ND ND ND ND ND ND 06/27/2005 8.00 41.77 ND ND ND ND ND ND 06/27/2005 9.61 40.65 ND ND ND ND ND ND 06/27/2005 9.61 40.65 ND ND ND ND ND ND 06/27/2005 9.61 40.65 ND ND ND ND ND ND 06/27/2007 9.61 40.69 ND ND ND ND ND ND 06/19/2002 9.61 40.65 ND ND ND ND ND ND 06/27/2003 9.61 40.65 ND ND ND ND ND ND 06/27/2004 9.61 40.69 ND ND ND ND ND ND 06/27/2007 9.61 40.69 ND ND ND ND ND ND			96	00/12/1000	800	41.68	QN	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10
Control Cont	MW-3	49.72	c7-01	08/17/1998	9.04	40.94	Q Q	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<1.0	2.9
50.20 5.00 40.49 ND ND ND 05/22/2002 9.12 40.60 ND ND ND ND 05/20/2002 9.13 40.49 ND ND ND ND 12/13/2002 9.13 40.59 ND ND ND ND 12/13/2002 9.13 40.59 ND ND ND ND 12/13/2003 8.80 40.52 ND ND ND ND 12/30/2004 8.81 40.91 ND ND ND ND 12/30/2004 8.15 41.57 ND ND ND ND ND 66/27/2005 8.00 41.72 ND ND ND ND S 50.20 5-20 02/08/2002 9.46 40.59 ND ND<				08/03/1999	0.00	40.72	9 5	24.2	ND<0.5	ND<0.5	ND<0.5	ND<1.0	2.4
Oct Oct				0007/80/70	90.6	40.74	2 5	ND<100	ND<1	ND<1	ND<5	ND<1	ND<1
50.20/2002 9.12 40.49 ND				7007/77/70	0.90	40.60	9 5	ND<100	ND<1	ND<1	ND<5	ND<1	ND<1
12/13/2002 9.13 40.59 ND ND ND ND ND 12/13/2002 9.13 40.59 ND ND ND ND ND 10/21/2003 9.10 40.62 ND ND ND ND ND 10/21/2003 9.10 40.62 ND ND ND ND ND 12/30/2004 8.15 41.57 ND ND ND ND ND 12/30/2004 8.15 41.57 ND ND ND ND ND 06/27/2005 8.00 41.57 ND ND ND ND ND 06/27/2005 9.46 40.74 ND ND ND ND ND 09/19/2002 9.61 40.59 ND ND ND ND ND 09/19/2002 9.61 40.49 ND ND ND ND 09/19/2003 9.61 40.59 ND ND ND ND 04/28/2004 9.31 40.62 ND ND ND ND 04/28/2004 9.31 40.69 ND ND ND ND 04/28/2004 9.31 40.69 ND ND ND ND 06/28/2004 9.31 40.69 ND ND ND ND				05/20/2005	9.12	40.49	<u> </u>	ND<100	ND<1	ND<5	ND<5	ND<5	ND<1
50.20 5-20 02/07/2003 8.80 40.92 ND ND <th></th> <td></td> <td></td> <td>09/19/2002</td> <td>9.23</td> <td>40.59</td> <td></td> <td>ND<100</td> <td>ND<1</td> <td>ND<5</td> <td>ND<5</td> <td>ND<5</td> <td>2.9</td>				09/19/2002	9.23	40.59		ND<100	ND<1	ND<5	ND<5	ND<5	2.9
50.20 5-20 02/28/2004 8.81 40.65 ND ND ND 10/21/2003 9.10 40.62 ND ND ND ND ND ND ND ND ND 0.50				12/13/2002	8.80	40.92	2	ND<100	ND<1	ND<5	ND<5	ND<5	ND<1
50.20 5-20 02/28/2004 8.81 40.91 ND SO 20.320 28.9 AO AO <th< th=""><th></th><td></td><td></td><td>10/01/2003</td><td>0.00</td><td>40.62</td><td>Ē</td><td>ND<50</td><td>ND<1</td><td>ND<5</td><td>ND<5</td><td>ND<5</td><td>ND<1</td></th<>				10/01/2003	0.00	40.62	Ē	ND<50	ND<1	ND<5	ND<5	ND<5	ND<1
50.20 5-20 02/08/2004 8.15 41.57 ND 0.50 28.9 50.20 5-20 02/08/2000 9.55 40.65 02/02/202002 9.61 05/20/2002 9.61 07/19/2002 9.61 07/19/2002 9.61 07/19/2003 9.59 0				10/21/2003	9.10	40.91	<u> </u>	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
50.20 5-20 02/08/2000 9.55 40.65 ND 2,320 28.9 50.20 5-20 02/08/2000 9.55 40.65 ND 2,320 28.9 05/20/2002 9.46 40.74 ND ND ND 2,320 28.9 50.20 5-20 02/08/2000 9.55 40.65 ND 02/22/2002 9.61 40.59 ND ND ND ND ND 12/13/2002 9.61 40.49 ND ND ND ND ND 12/13/2002 9.61 40.59 ND ND ND ND ND 12/13/2003 9.58 40.62 ND ND ND ND ND 10/21/2003 9.58 40.62 ND ND ND ND ND 12/13/02/04 8.65 41.55 ND ND ND ND ND				04/28/2004	0.01	41.57	2 5	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
50.20 5-20 02/08/2000 9.55 40.65 ND 2,320 28.9 50.20 5-20 02/08/2002 9.46 40.74 ND ND ND 2,320 28.9 02/22/2002 9.46 40.74 ND ND ND ND 65/20/2002 9.61 40.59 ND ND ND ND ND ND 12/13/2002 9.61 40.49 ND ND ND ND ND 12/13/2003 9.29 40.91 ND ND ND ND ND 64/28/2004 9.31 40.89 ND ND ND ND ND 12/30/2004 8.65 ND 40.65 ND ND ND ND				12/30/2004	6.13	41.57		ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
50.20 5-20 02/08/2002 9.55 40.65 ND 2,320 28.9 02/22/2002 9.46 40.74 ND ND ND ND 05/20/2002 9.61 40.59 ND ND ND ND 09/19/2002 9.71 40.49 ND ND ND ND 12/13/2002 9.61 40.59 ND ND ND ND 05/07/2003 9.29 40.91 ND ND ND ND 10/21/2003 9.58 40.62 ND 54 ND 04/28/2004 9.31 40.89 ND ND ND ND 12/30/2004 8.65 41.55 ND ND ND ND 0.50				06/27/2005	8.00	41.72							
50.20 5-20 02/08/2000 9.55 40.65 ND 2,320 28.9 02/22/2002 9.46 40.74 ND ND ND ND 05/20/2002 9.61 40.59 ND ND ND ND 12/13/2002 9.71 40.49 ND ND ND ND 12/13/2002 9.61 40.59 ND ND ND ND 05/07/2003 9.29 40.91 ND ND ND ND 10/21/2003 9.58 40.62 ND 54 ND ND 04/28/2004 9.31 40.89 ND ND ND ND ND 12/30/2004 8.65 41.55 ND ND ND ND ND													
50.20 5-20 02/08/2000 559 46.74 ND ND<100 ND<1 02/22/2002 9.46 40.74 ND ND<100 ND<1 05/20/2002 9.61 40.59 ND ND<100 ND<1 12/13/2002 9.61 40.59 ND ND<100 ND<1 05/07/2003 9.29 40.91 ND ND<100 ND<1 10/21/2003 9.58 40.62 ND 54 ND<10 ND<10 04/28/2004 9.31 40.89 ND ND<100 ND<0.50	,	6		0000,80,00	0 65	40.65	S	2.320	28.9	87.5	70.0	488	3.0
9.61 40.59 ND ND<100 ND<1 9.71 40.49 ND ND<100 ND<1 9.61 40.59 ND ND<100 ND<1 9.29 40.91 ND ND<100 ND<1 9.58 40.62 ND 54 ND 9.31 40.89 ND ND<100 ND<1 8.65 41.55 ND ND<100 ND<0.50	MW-4	50.20	07-5	05/08/2000	9.55	40.07		ND<100	ND<1	ND<1	ND<5	ND<1	ND<1
9.71 40.49 ND ND<100 ND<1 9.61 40.59 ND ND<100 ND<1 9.29 40.91 ND ND<100 ND<1 9.58 40.62 ND 54 ND<1 9.31 40.89 ND ND<100 ND<0.50 8.65 41.55 ND ND<100 ND<0.50				7007/77/70	9.40	40.59	(R	ND<100	ND<1	ND<1	ND<5	ND<1	ND<1
9.61 40.59 ND ND<100 ND<1 9.29 40.91 ND ND<100 ND<1 9.58 40.62 ND 54 ND<1 9.31 40.89 ND ND<100 ND<0.50 8.65 41.55 ND ND<100 ND<0.50				09/20/2002	17.0	40 49		ND<100	ND<1	ND<5	ND<5	ND<5	ND<
9.29 40.91 ND ND<100 ND<1 9.58 40.62 ND 54 ND<1 9.31 40.89 ND ND<100 ND<0.50 8.65 41.55 ND ND<100 ND<0.50				12/12/2002	0.61	40.59	GN.	ND<100	ND<1	ND<5	ND<5	ND<5	2.4
9.58 40.62 ND 54 ND<1 9.31 40.89 ND ND<100 ND<0.50 8.65 41.55 ND ND<100 ND<0.50				12/13/2002	0.00	40.01	E	ND<100	ND<1	ND<5	ND<5	ND<5	ND<1
9.38 40.89 ND ND<100 ND<0.50 8.65 41.55 ND ND<100 ND<0.50				05/0//2003	67.6	40.51	2 5	54	N N N	ND<5	ND<5	ND<5	ND<1
8.65 41.55 ND ND<100 ND<0.50				10/21/2003	9.58	40.07	2 5	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
5.05 UNI CO.14 CO.3				04/28/2004	9.31	40.09	2 5	ND<100	ND<0.50	ND<1.0	ND<1.0	ND<1.0	ND<1.0
170 001/014 014				12/30/2004	8.63	41.33	Đ.	207,017	170	ND<1.0	ND<10	ND<1.0	ND<1.0
ND ND<100 0.01				06/27/2005	8.48	41.72	Q.	ND<100	0.01	ND 1.0		<u>}</u>	

Wells MW-1 through MW-3 were surveyed for elevation and location by a California Registered Land Surveyor on July 6, 1998. Well MW-4 was surveyed in February, 2000. Analyzed for total petroleum hydrocarbons as gasoline by modified EPA method 8015M. Analyzed in general accordance with EPA method 8020 prior to 2/22/02 and analyzed by EPA method 8260B thereafter.

feet below the ground surface

feet above mean sea level feet below top of casing ft-bgs ft-msl ft-toc ND

not detected below indicated detection limit

Values denoted by 'J' are reported below the laboratory detection limit.

CHEMICAL ANALYSES OF VAPOR SAMPLES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA TABLE 3

(vapor - parts per million (v/v) - unless otherwise specified)

	DATE	TIME				ETHYL	TOTAL		Fixed G	Fixed Gases (in % by volume)	volume)
SAMPLE	SAMPLED	SAMPLED	TPH [1]	SAMPLED TPH [1] BENZENE [2] TOLUENE [2]	TOLUENE [2]	BENZENE 2	AYLENES [2]	MIDE 6	E 70		2 7
TEST 1											
VEW2-Start* VEW2-Step 1 VEW2- End	09/16/2003 09/16/2003 09/16/2003	10:39 11:06 12:12	 109 153	 0.1 0.325	0.289 1.320	0.031 0.329	0.234 1.283	 ND<0.001 ND<0.001	17.51 19.08	3.32	 79.17 79.49
TEST 2											
VEW1-Start VEW1-End	09/16/2003 09/16/2003	12:47 14:10	5,440	8.980 9.690	97.400 115.000	26.300 35.100	123.800 93.300	ND<0.001 ND<0.001	10.78	10.76	78.46 79.26

NOTES:

[1] Total Petroleum Hydrocarbons as gasoline (TPH) analyzed in accordance with EPA Method No. 8015M.
[2] Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) and fuel oxygenates analyzed in accordance with EPA Method No. TO-15.
[3] Fixed gases analyzed for included Oxygen (O2), Carbon Dioxide (CO2) and Nitrogen (N2), Hydrogen (H2) and Carbon Monoxide (CO). Hydrogen (H2), Carbon Monoxide (CO), and Methane (CH4) were not detected in any of the samples. '--' = Not analyzed

ND = Not detected at the given detection limit.

* Sample VEW2-Start was a diluted sample and was not analyzed.

FIGURES

EXPLANATION

♦ # IRWF16

Well number (owned by IRWD,

2001)

⊕ MB-SA

Industrial Groundwater Supply Well

MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA

Client: MB INDUSTRIES

Project No.: 383-01

FREY ENVIRONMENTAL, INC.

SITE LOCATION MAP

NOTE:

1) All locations and dimensions are approximate.

 Base map from USGS 7.5 minute Santa Ana (1966, photorevised 1988), California topographic quadrangle.

Date: SEPTEMBER 2003

Figure: 1

EXPLANATION

⊕ MB-SA INDUSTRIAL GROUNDWATER SUPPLY WELL

™ VEW1 VAPOR EXTRACTION WELL LOCATION

⊕ MW-1 GROUNDWATER MONITORING WELL LOCATION

NOTES:

All locations and dimensions are approximate.
 Base map from drawing by American Environmental Management, site map dated August 1996, and field observations by FREY Environmental, Inc. personnel on 2/22/02 and 5/20/02.

MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA

Client: MB INDUSTRIES

383-01 Project No.:

FREY ENVIRONMENTAL, INC.

SITE SKETCH

Date: SEPTEMBER 2003

Figure 2

⊕ MW-3

EXPLANATION

+ TS-1 SOIL SAMPLE LOCATION

● B1 GEOPROBE BORING LOCATION

■ VEW1 VAPOR EXTRACTION WELL LOCATION

NOTES:

All locations and dimensions are approximate.
 Base map from drawing by Sierra Geoscience, Inc. titled Groundwater Contour Map, figure 2, dated 9/10/99, FREY Environmental, Inc. personnel field notes, and field notes by OCHCA.

MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA

Client: MB INDUSTRIES

Project No.:

FREY ENVIRONMENTAL, INC.

SITE SKETCH SHOWING SOIL SAMPLE, SOIL BORING, GROUNDWATER MONITORING, AND VAPOR EXTRACTION WELL LOCATIONS

Date: JULY 2005

Figure 3

383-01

EXPLANATION

+ TS-1 SOIL SAMPLE LOCATION

B1 GEOPROBE BORING LOCATION

■ VEW1 VAPOR EXTRACTION WELL LOCATION

GROUNDWATER MONITORING WELL LOCATION

A A SUBSURFACE GEOLOGIC SECTION LOCATION

NOTES:

All locations and dimensions are approximate.
 Base map from drawing by Sierra Geoscience, Inc. titled Groundwater Contour Map, figure 2, dated 9/10/99, FREY Environmental, Inc. personnel field notes, and field notes by OCHCA.

MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA

Client: MB INDUSTRIES

Project No.:

383-01

FREY ENVIRONMENTAL, INC.

SITE SKETCH SHOWING SUBSURFACE GEOLOGIC SECTION LOCATION A-A'

Date: JULY 2005

Figure 4

EXPLANATION

SP

POORLY GRADED SAND

SILTY SAND

Finegrained soils CT

SILT

[4.08.

CONCENTRATION OF BENZENE IN SOIL (EPA METHOD No 8021 before 8/21/03, EPA Method 8260B thereafter) in mg/kg, ND=not detected above laboratory

detection limit)

ESTIMATED LIMITS OF BENZENE CONCENTRATIONS IN SOIL >1 mg/kg

目

WELL SCREEN LOCATION

(12/30/04) 某

GROUNDWATER DEPTH AND DATE MEASURED

NOTES:

- 1) The subsurface conditions shown are for the boring locations only. Subsurface conditions between borings may be different than shown.
- Vertical scale has been exaggerated for presentation purposes only.
- 3) USCS descriptions are based on field classification.
- 4) See boring logs for additional details.

MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA

Client: MB INDUSTRIES

Project No.: 383-01

FREY ENVIRONMENTAL, INC.

SUBSURFACE GEOLOGIC SECTION A-A'

⊕ MW-3

EXPLANATION

 B1 GEOPROBE BORING LOCATION

™ VEW1 VAPOR EXTRACTION WELL LOCATION

→ MW-1 GROUNDWATER MONITORING WELL LOCATION

With maximum TPHg/benzene concentration in soil at 5 to 10 feet BGS (in mg/kg; ND=not detected above laboratory detection limit) [15/0.330]

CONTOUR OF EQUAL TPH-G CONCENTRATION IN SOIL (at 5 to 10 feet BGS, in mg/kg)

NOTES:

 All locations and dimensions are approximate.
 Base map from drawing by Sierra Geoscience, Inc. titled Groundwater Contour Map, figure 2, dated 9/10/99, FREY Environmental, Inc. personnel field notes, and field notes by OCHCA.

MB INDUSTRIES 16808 SOUTH HARBOR BOULEVARD SANTA ANA, CALIFORNIA

Client: MB INDUSTRIES

Project No.:

383-01

FREY ENVIRONMENTAL, INC.

SITE SKETCH SHOWING MAXIMUM TPH AND BENZENE
CONCENTRATIONS IN SOIL SAMPLES COLLECTED
ON OR AFTER AUGUST 21, 2003
BETWEEN 5 AND 10 FEET BGS

Date: JULY 2005

Figure 6

APPENDIX A FIELD PROCEDURES

A.1 DIRECT-PUSH BORING PROCEDURES AND SOIL SAMPLE COLLECTION

- 1. Soil borings B1 through B7 were advanced with a truck-mounted, direct-push rig.
- 2. Soil samples were collected using a combination piston/split barrel sampler equipped with 1-inch diameter acetate liners.
- 3. The samplers were cleaned by FREY personnel between sample intervals using a brush and tap water followed by a brush and TSP solution, a tap water rinse, and deionized water rinse. The samplers were dried by air or with a towel prior to sampling.
- 4. Following retrieval of the sampler, the acetate liner was removed from the sampler and approximately 6-inches was cut off the end. The ends were covered with Teflon tape and sealed with PVC endcaps and labeled.
- 5. The soil in the remaining liner was used for lithologic description and for field head space analysis.
- 6. Soil samples were placed in an ice chest cooled with ice.
- 7. The samples were delivered to the laboratory following collection. Sample handling, transport, and delivery to the laboratory were documented using Chain-of-Custody procedures, including the use of Chain-of-Custody forms.
- 8. Geoprobe borings were backfilled with bentonite sand and resurfaced to match the existing ground surface.

APPENDIX B

BORING LOGS

	Date dr Geolog			l						tion	
								_ W	ater depth		
			on					_ W	ell screen depth	·	
				1000 110 100 100 100 100 100 100 100 10	\\ \signi_{\iii\currradini_{\signi_{\signi_{\signi_{\signi_{\signi_{\iii\currradini_{\iii\}\\ \cirk\lime\signi_{\signi_{\iii\}\currradini_{\signi_{\iii\}\\ \cirk\iii\}\\ \cirk\iii\}\} \\ \cirk\iii\} \} \} \} \} \} \} \\ \extiting \time\} \} \} \} \} \} \} \} \} \} \} \} \} \			1 8 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /			The Color
0 — 1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 —	<1	₹*				32	5)	SM	Light brown, dry Gravel Description base visual soil descript to include results tests, where available. Graphic presents. Sample identification of blows foot using a 140 inch drop. Sample location. Field sample head description of the appendicies.	ation of boring log ation number s to advance sampler one pound hammer with a 30 and type adspace readings for a e methods used see	No petroleum hydrocarbon odor
19 — 20 —									·	ation of well construction	
21 — 22 —			•						Remarks, and oc	dor observations———	
23 —											
24 —											
25 –											
26 –											
27 —											
28 —		[
29 —											
30	=	ct Nam		ŀ	(EY	тоі	BORIN	IG LO	GS	Log of Boring	Figure No.

SOIL DESCRSYSTEM (USCS)

		— (0003)			
M:	OISTURE CONTENT	GROUP NAME			
DRY	No perceptible moisture	Vell-graded GRAVEL Vell-graded GRAVEL with Sand			
DAMP	Some perceptible moisture, no moisture remains on hands sfter squeezing	Poorly-graded GRAVEL Poorly-graded GRAVEL with Sand			
MOIST	Perceptible moisture, moisture remains on hands after squeezing	ilty GRAVEL ilty GRAVEL with Sand			
WET	Some pore/voids filled with liquid, typical of capillary fringe	layey GRAVEL layey GRAVEL with Sand			
SATURATED	All pores/voids filled with liquid, free liquid visible, typical of below ground water table	Vell-graded SAND Vell-graded SAND with Gravel Poorly-graded SAND Poorly-graded SAND Poorly-graded SAND			
		Silty SAND / Clayey SAND with Gravel Silty SAND / Clayey SAND with Gravel SILT / SILT with Sand or Gravel Sandy SILT / Sandy SILT with Gravel			
	GRADIN	Prayelly SILT / Gravelly SILT with Sand ean CLAY / Lean CLAY with Sand or Gravel Gandy lean CLAY / Sandy lean Clay with Gravel Fravelly lean CLAY / Gravelly lean CLAY with Sand			
	Wide range of grain size	Grade ⁾ rganic SILTS or organic CLAYS in sizes :			
		atrlastic SILT / Elastic SILT with Sand or Gravel andy elastic SILT / Sandy elastic SILT with Gravel ⇒ravelly elastic SILT / Gravelly elastic SILT with Sand			
		deat CLAY / Fat CLAY with Sand or Gravel andy fat CLAY / Sandy fat CLAY with Gravel rearravelly fat CLAY / Gravelly fat CLAY with Sand ed			
		rganic CLAYS or organic SILTS f medium to high plasticity			
		EAT, MUCK and other highly organic soils			

- Blow counts on logs are the number of blows to drive the sampler 12 inches with a 140 pound hammer falling 30 inches unless otherwise specified.
- 3) USCS soil classification reference = ASTM Standard D2487-85.

	PERC		1-1-98 water level and date measured (if applicable)
5%	12%	20%	FREY ENVIRONMENTAL, INC.

BORING LOG LEGEND AND UNIFIED SOIL CLASSIFICATION SYSTEM

March 22, 2005 NA Top of casing elevation Date drilled/completed Approx. 14 feet BGS J. Moeller Boring depth Geologist Approx. 11 feet BGS Direct Push Water depth Drilling equipment _ Not surveyed Well screen depth Surface elevation (slow Conne A POPULAR (\$\frac{1}{2}\frac{1}{ 000 Dirt 1 2 3 4 5 NA 5.3 Slight 5 petroleum Green brown, dry CLAY with some Silt, CL hydrocarbon low plasticity 6 odor 7 8 9 10 Becomes blue gray and wet 15 NA 10 11 12 ND<0.50 NA 12 Blue gray, saturated, fine grained SAND SP 13 ND<0.50 14 NA 14 Bottom of boring at 14 feet BGS 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Log of Boring Figure No. **MB INDUSTRIES** Project Name **B1** 383-01 Project Number

March 22, 2005 NA Date drilled/completed Top of casing elevation Approx. 15 feet BGS J. Moeller Boring depth Geologist Approx. 11 feet BGS Direct Push Water depth Drilling equipment _ Not surveyed NA Well screen depth Surface elevation Simoning · Asman 4000 Dirt 1 2 3 ND<0.50 NA 5 5 petroleum Blue gray, dry CLAY with some Silt, CL hydrocarbon low plasticity 6 odor 7 10 ND<0.50 NA 10 SP Blue gray, wet, fine grained SAND 11 with some Silt 12 13 14 ND<0.50 NA 15 Becomes saturated 15 Bottom of boring at 15 feet BGS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Log of Boring Figure No. **MB INDUSTRIES** Project Name **B2** 1 383-01 Project Number

NA March 22, 2005 Top of casing elevation Date drilled/completed Approx. 15 feet BGS J. Moeller Boring depth Geologist Approx. 11 feet BGS Direct Push Water depth Drilling equipment _ NA Not surveyed Surface elevation Well screen depth 2000 - 100 -Simon Source ASDAKS (1000) (1000) 0 1 2 3 4 5 ND<0.50 NA 5 petroleum Tan, dry, fine grained SAND SP hydrocarbon 6 odor 7 8 9 ND<0.50 10 10 11 ML Dark gray, wet SILT 12 13 14 ND<0.50 15 Tan, saturated, fine to medium grained SAND SP 15 Bottom of boring at 15 feet BGS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Log of Boring Figure No. **MB INDUSTRIES** Project Name **B3** 1 Project Number 383-01

	Geologis Drilling e	led/comple ste quipment elevation	J. Moeller				Bo W	op of casing elevation oring depth ater depth ell screen depth	Approx. 15 feet BGS	
	2 2 2 E						S S S S S S S S S S		ion ion ion in the ion	S. Market S. Mar
0								Dirt		
1 —										
2 —										
3 —										
	ND<0.50	NA		<u> </u>	5					No petroleum
5 — 6 —							CL	Olive with red strict SILT, low plasticit	ations, dry CLAY with some y	hydrocarbon odor
7										Odoi
8 —										
	ND -0 50				10					
10	ND<0.50	NA		1	"			Construction T		
11 —	1						ML	Gray, wet SILT		
12 —										
13 -										
14 -	ND<0.50	NA		T -	15					
15						::::::	SP	Tan, saturated, fine Bottom of boring		!
16 —								Bottom of boning	at 10 leet BGG	
17 —										
18										
19										
20										
21 -										
22 — 23 —				•						
23 24 —										
25										
26 —										
27 —										
28 —										
29 —										
30 -									Log of Boring	Figure No.
		ct Name	MB INDUS	TRIES	;				B4	1
	Proje	ct Numbe	r 383-01						_ -	

NA Top of casing elevation March 22, 2005 Date drilled/completed Approx. 14 feet BGS J. Moeller Boring depth Geologist Approx. 11 feet BGS Direct Push Water depth Drilling equipment _ NA Not surveyed Well screen depth Surface elevation \[\langle \frac{\sigma_{\text{sigma}}^{\text{sigma}}}{-\text{constant}} \] 1 80 m Conns 03000 1 * ASMAN O CHILD 0 Dirt 2 3 petroleum 4 5 ND<0.50 NA hydrocarbon odor 5 Olive brown, dry CLAY with some SILT, CL 6 low plasticity 7 8 ND<0.50 NA 10 10 Slight petroleum 11 12 ND<0.50 NA hydrocarbon odor 12 No SP Tan, saturated, fine grained SAND petroleum 13 ND<0.50 NA hydrocarbon odor 14 Bottom of boring at 14 feet BGS 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Figure No. Log of Boring **MB INDUSTRIES** Project Name **B5** 1 383-01 Project Number

NA March 22, 2005 Top of casing elevation Date drilled/completed Approx. 15 feet BGS J. Moeller Boring depth Geologist Approx. 11 feet BGS Direct Push Water depth Drilling equipment _ NA Not surveyed Well screen depth Surface elevation Simon Conis Somolows * ASTAN 0 Dirt 1 2 3 4 5 NA 5 No recovery 6 Strong petroleum 7 hydrocarbon NA 8 41 odor 8 Mild Blue green, wet, fine grained SAND SP petroleum 9 NA 10 13 hydrocarbon odor 10 Becomes saturated 11 12 petroleum 13 hydrocarbon odor 14 15 0.53 NA 15 Bottom of boring at 15 feet BGS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Log of Boring Figure No. **MB INDUSTRIES** Project Name **B6** 383-01 Project Number

NA March 22, 2005 Top of casing elevation Date drilled/completed Approx. 15 feet BGS J. Moeller Boring depth Geologist Approx. 11 feet BGS Direct Push Water depth Drilling equipment NA Not surveyed Well screen depth Surface elevation 100 (5.00 (5 Silving Manager Silving Silvin * Asmarks 4000 Dirt 1 2 3 No petroleum 4 5 ND<0.50 NA hydrocarbon odor 5 CL Olive, dry CLAY with some SILT, low plasticity 6 7 8 9 10 NA 2.9 10 Becomes wet 11 12 13 White, black, saturated, fine to medium 14 NA 15 ND<0.50 grained SAND SP 15 Bottom of boring at 15 feet BGS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Log of Boring Figure No. **MB INDUSTRIES** Project Name **B7** 383-01 Project Number

APPENDIX C LABORATORY REPORT

March 29, 2005

Josh Moeller Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715

Subject: Calscience Work Order No.: 05-03-1497

> **Client Reference:** MB Industries / 383-01

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 3/23/2005 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The original report of any subcontracted analysis is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

March

Stephen Nowak **Project Manager**

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method:

05-03-1497 EPA 5030B **DHS LUFT**

03/23/05

Project: MB Industries / 38	3-01						Page 1 of 7
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
B1-5		05-03-1497-1	03/22/05	Solid	03/25/05	03/25/05	050325B01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	5.3	0.5	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Bromofluorobenzene	102	39-129					
B1-10		05-03-1497-2	03/22/05	Solid	03/25/05	03/25/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	15	0.50	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Bromofluorobenzene	105	39-129					
B1-12		05-03-1497-3	03/22/05	Solid	03/25/05	03/25/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Bromofluorobenzene	96	39-129					
B1-14		05-03-1497-4	03/22/05	Solid	03/25/05	03/25/05	050325B01
Parameter Parame	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
11 11 do Cacomio							
Surrogates:	<u>REC (%)</u>	Control Limits		Qual			

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715

Date Received: Work Order No: Preparation: Method:

05-03-1497 **EPA 5030B DHS LUFT**

03/23/05

Project: MB Industries / 383-0	1						Page 2 of 7
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
B2-5		05-03-1497-5	03/22/05	Solid	03/25/05	03/25/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
PH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	<u>REC (%)</u> 90	Control Limits 39-129		Qual			
B2-10		05-03-1497-6	03/22/05	Solid	03/25/05	03/25/05	050325B01
Parameter_	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates: I,4-Bromofluorobenzene	<u>REC (%)</u> 93	Control Limits 39-129		Qual			
B2-15		05-03-1497-7	03/22/05	Solid	03/25/05	03/25/05	050325B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>		
ΓPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control Limits 39-129		Qual			
B3-5		05-03-1497-8	03/22/05	Solid	03/25/05	03/25/05	050325B01
Parameter Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates: 1.4-Bromofluorobenzene	REC (%)	Control Limits 39-129		<u>Qual</u>			

RL - Reporting Limit ,

DF - Dilution Factor ,

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method:

05-03-1497 **EPA 5030B** DHS LUFT

03/23/05

Dage 3 of 7

ate Date Date Date Date Date Date Date D	
its /kg	5 050325B01
/kg	
!5/05 03/25/0 5	
25/05 03/25/05	
	050325B01
<u>its</u>	
/kg	
25/05 03/25/05	5 050325B01
<u>its</u>	
/kg	
25/05 03/25/0	5 050325B01
<u>nits</u>	
ı/kg	
	n <u>its</u> y/kg

RL - Reporting Limit ,

DF - Dilution Factor ,

Frey Environmental, Inc.

2817-A Lafayette Avenue

Newport Beach, CA 92663-3715

Preparation:

Method:

Date Received:

03/23/05

05-03-1497

Preparation:

EPA 5030B

DHS LUFT

Project: MB Industries / 383-01

Page 4 of 7

i roject. Wib industrice / coc							
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
B4-15		05-03-1497-13	03/22/05	Solid	03/25/05	03/25/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates: 1,4-Bromofluorobenzene	<u>REC (%)</u> 96	Control Limits 39-129		Qual			
B5-5		05-03-1497-14	03/22/05	Solid	03/25/05	03/25/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Bromofluorobenzene	87	39-129					
B5-10		05-03-1497-15	03/22/05	Solid	03/25/05	03/25/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control		Qual			
1,4-Bromofluorobenzene	95	<u>Limits</u> 39-129					
B5-12		05-03-1497-16	03/22/05	Solid	03/25/05	03/25/05	050325B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Bromofluorobenzene	94	39-129					

RL - Reporting Limit ,

DF - Dilution Factor ,

Frey Environmental, Inc.

2817-A Lafayette Avenue

Newport Beach, CA 92663-3715

Preparation:

Method:

Date Received:

03/23/05

05-03-1497

Preparation:

EPA 5030B

DHS LUFT

Project: MB Industries / 383-01

Page 5 of 7

Project: MB Industries / 383-01							Page 5 of 7
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
B5-14		05-03-1497-17	03/22/05	Solid	03/25/05	03/26/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control Limits		Qual			
1,4-Bromofluorobenzene	93	39-129					
B6-8		05-03-1497-18	03/22/05	Solid	03/26/05	03/26/05	050326B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	41	13	25		mg/kg		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>			
1,4-Bromofluorobenzene	102	39-129					
B6-10		05-03-1497-19	03/22/05	Solid	03/25/05	03/26/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	13	0.50	1		mg/kg		
Surrogates:	REC (%)	Control		Qual			
1,4-Bromofluorobenzene	91	<u>Limits</u> 39-129					
B6-15		05-03-1497-20	03/22/05	Solid	03/25/05	03/26/05	050325B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>		
TPH as Gasoline	0.53	0.50	1		mg/kg		
Surrogates:	REC (%)	Control		Qual			
1,4-Bromofluorobenzene	96	<u>Limits</u> 39-129					

RL - Reporting Limit ,

DF - Dilution Factor ,

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method:

03/23/05 05-03-1497 **EPA 5030B DHS LUFT**

						Page 6 of 7
	Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
	05-03-1497-21	03/22/05	Solid	03/26/05	03/26/05	050326B01
Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
ND	0.50	1		mg/kg		
REC (%)	Control		Qual			
72	39-129					
	05-03-1497-22	03/22/05	Solid	03/26/05	03/26/05	050326B01
Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
2.9	0.5	1		mg/kg		
REC (%)	Control		<u>Qual</u>			
84	39-129					
	05-03-1497-23	03/22/05	Solid	03/26/05	03/26/05	050326B01
Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
ND	0.50	1		mg/kg		
REC (%)	<u>Control</u>		Qual			
88	39-129					
	098-03-008-5,33	6 N/A	Solid	03/25/05	03/25/05	050325B01
Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
ND	0.50	1		mg/kg		
REC (%)	Control Limits		Qual			
	Result ND REC (%) 72 Result 2.9 REC (%) 84 Result ND REC (%) 88	Lab Sample Number	Lab Sample Number Date Collected 05-03-1497-21 03/22/05 Result RL DF ND 0.50 1 REC (%) Control Limits 39-129 03/22/05 Result RL DF 2.9 0.5 1 REC (%) Control Limits 39-129 03/22/05 Result RL DF ND 0.50 1 REC (%) Control Limits 39-129 1 REC (%) Control Limits 39-129 N/A Result RL DF 098-03-008-5,336 N/A Result RL DE	Lab Sample Number Date Collected Collected Matrix 05-03-1497-21 03/22/05 Solid Result RL DF Qual ND 0.50 1 Qual REC (%) Control Limits 39-129 Qual Qual Result RL DF Qual 2.9 0.5 1 Qual REC (%) Control Limits 39-129 Qual Qual Result RL DF Qual ND 0.50 1 Qual REC (%) Control Limits 39-129 Qual Qual REC (%) Control Limits 39-129 Qual Qual Result RL DF Qual Result RL DF Qual	Lab Sample Number Date Collected Collected Matrix Date Prepared 05-03-1497-21 03/22/05 Solid 03/26/05 Result RL DF Qual Units ND 0.50 1 mg/kg REC (%) Control Limits 72 Qual O3/26/05 Result RL DF Qual Units mg/kg 2.9 0.5 1 mg/kg REC (%) Control Limits 39-129 Qual Qual REC (%) Control Limits 39-129 Qual Units mg/kg Result RL DF Qual Units mg/kg REC (%) Control Limits 39-129 Qual Qual Units mg/kg REC (%) Control Limits 39-129 Qual Qual Units mg/kg Result RL DF Qual Units Result RL DF Qual Units	Lab Sample Number Date Collected Collected Collected Matrix Matrix Prepared Prepared Analyzed Analyzed Result RL DF Qual Units mg/kg ND 0.50 1 mg/kg REC (%) 72 Control Limits 39-129 Qual Units mg/kg Result RL DF Qual Units mg/kg 2.9 0.5 1 mg/kg mg/kg REC (%) Control Limits 84 39-129 Qual Units mg/kg 03/26/05 Result RL DF Qual Units mg/kg ND 0.50 1 mg/kg mg/kg Result RL DF Qual Units mg/kg ND 0.50 1 mg/kg mg/kg REC (%) Control Limits 88 39-129 Qual Units 03/25/05 03/25/05 Result RL DF Qual Units 03/25/05 03/25/05

DF - Dilution Factor ,

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method:

05-03-1497 **EPA 5030B DHS LUFT**

03/23/05

Page 7 of 7

Project: MB Industries / 383-0	1						Page / of /
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		098-03-008-5,337	N/A	Solid	03/26/05	03/26/05	050326B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	0.50	1		mg/kg		
Surrogates:	REC (%)	Control		Qual			
1,4-Bromofluorobenzene	94	<u>Limits</u> 39-129					
Method Blank		098-03-008-5,338	N/A	Solid	03/26/05	03/26/05	050326B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	ND	5.0	10		mg/kg		
Surrogates:	REC (%)	Control		Qual			
1,4-Bromofluorobenzene	102	<u>Limits</u> 39-129					

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units: 03/23/05 05-03-1497 EPA 5030B EPA 8260B

ug/kg

Project: MB Industries / 383-01

Page 1 of 10

Project: MB Industries	/ 383-01								Page	1 of 1
Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
B1-5			05-03-14	97-1	03/22/05	Solid	03/24/05	03/24/05	05032	4L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resul	t RL	DF	Qual
Benzene	71	5	1		Tert-Butyl Alcoho	ol (TBA)	ND	50	1	
Ethylbenzene	620	5	1		Diisopropyl Ether	r (DIPE)	ND	10	1	
Toluene	330	5	1		Ethyl-t-Butyl Ethe	, ,	ND	10	1	
p/m-Xylene	920	130	25		Tert-Amyl-Methy	•		10	1	
o-Xylene	420	130	25		Ethanol	,	ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1				.,_	_3•	•	
Surrogates:	REC (%)	Control Limits	·	Qual	Surrogates:		REC (9	6) <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	103	75-141			1,2-Dichloroetha	ne-d4	106	73-151		
Toluene-d8	100	87-111			1,4-Bromofluorol		98	71-113		
B1-10			05-03-14	97-2	03/22/05	Solid	03/24/05	03/24/05	05032	4L01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Resul</u>	t RL	<u>DF</u>	<u>Qual</u>
Benzene	330	5	1		Tert-Butyl Alcoho		ND	50	1	
Ethylbenzene	640	5	1		Diisopropyl Ether	r (DIPE)	ND	10	1	
Toluene	100	5	1		Ethyl-t-Butyl Ethe	er (ETBE)	ND	10	1	
o/m-Xylene	1800	5	1		Tert-Amyl-Methy	I Ether (TAME	E) ND	10	1	
o-Xylene	190	5	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC (9	6) <u>Control</u> <u>Limits</u>		<u>Qual</u>
Dibromofluoromethane	99	75-141			1,2-Dichloroethau	ne-d4	103	73-151		
Toluene-d8	98	87-111			1,4-Bromofluorol	penzene	94	71-113		
B1-12			05-03-14	97-3	03/22/05	Solid	03/24/05	03/24/05	05032	4L01
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Benzene	ND	5.0	<u> </u>		Tert-Butyl Alcoho	J (TRA)	ND	50	<u> </u>	QQQQ
Ethylbenzene	ND	5.0 5.0	1		Diisopropyl Ether	· ,	ND ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Ethe	, ,	ND	10	1	
o/m-Xylene	ND	5.0 5.0	1		Tert-Amyl-Methyl			10	1	
o-Xylene	ND	5.0 5.0	1		Ethanol	Laiei (171VIE	ND	250	1	
Methyl-t-Butyl Ether (MTBE)		5.0 5.0			LuiaiiOi		ND	250	1	
	ND BEC (%)		1	Ougl	Currogatos		DEC (/) Control		Ougl
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC (9	6) <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	102	75-141			1,2-Dichloroetha	ne-d4	107	73-151		
					•					
Toluene-d8	97	87-111			1,4-Bromofluorot	anzana	87	71-113		

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method:

Units:

05-03-1497 EPA 5030B EPA 8260B

03/23/05

ug/kg

Project: MB Industries / 383-01

Page 2 of 10

Client Sample Number				Sample lumber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
B1-14			05-03-14	97-4	03/22/05	Solid	03/24/05	03/24/05	05032	4L01
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Resu	<u>lt RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	5.0	1		Tert-Butyl Alcoh	ol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	er (DIPE)	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth	ner (ETBE)	ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Methy	yl Ether (TAME	E) ND	10	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits	•	<u>Qual</u>	Surrogates:		REC (%) <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	104	75-141			1,2-Dichloroetha	ane-d4	108	73-151		
Toluene-d8	96	87-111			1,4-Bromofluoro		85	71-113		
B2-5			05-03-14	97-5	03/22/05	Solid	03/24/05	03/24/05	05032	4L01
Parameter	Result	RL	DF	Qual	Parameter		Resu	lt RL	DF	Qual
······································		5.0	<u> </u>	<u>Quai</u>	Tert-Butyl Alcoh	ol (TRA)	ND	<u> </u>	1	
Benzene	ND				Diisopropyl Ethe		ND ND	10	1	
Ethylbenzene	ND	5.0	1		Ethyl-t-Butyl Eth		ND ND	10	1	
Toluene	ND	5.0	1		•	, ,		10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Methy	yı Etner (TAIVII	•			
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1				DEO /	0/\ O4I		Our
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC (Limits		Qual
Dibromofluoromethane	109	75-141			1,2-Dichloroetha	ane-d4	112	73-151		
Toluene-d8	97	87-111			1,4-Bromofluoro	benzene	85	71-113		
B2-10			05-03-14	97-6	03/22/05	Solid	03/24/05	03/24/05	05032	24L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter		Resu	it RL	DF	<u>Qual</u>
Benzene	ND	5.0	1		Tert-Butyl Alcoh	nol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth		ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth		E) ND	10	1	
o-Xylene	ND	5.0	1		Ethanol	- •	ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits	-	Qual	Surrogates:		REC (%) Control Limits		Qual
Dibromofluoromethane	107	75-141			1.2-Dichloroetha	ane-d4	115	73-151		

Units:

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method:

03/23/05 05-03-1497 **EPA 5030B EPA 8260B**

ug/kg

Page 3 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared /	Date Analyzed	QC B	atch ID
B2-15			05-03-14	197-7	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Result	RL	<u>DF</u>	Qual
Benzene	ND	5.0	1		Tert-Butyl Alcoh	ol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	er (DIPE)	ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Eth		ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Methy	yl Ether (TAME) ND	10	1	
o-Xylene	ND	5.0	1		Ethanol	,	ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits	·	Qual	Surrogates:		<u>REC (%</u>	6) <u>Control</u> <u>Limits</u>		Qual
Dibromofluoromethane	102	75-141			1,2-Dichloroetha	ane-d4	103	73-151		
Foluene-d8	97	87-111			1,4-Bromofluoro	benzene	90	71-113		
B3-5			05-03-14	497-8	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
							Decul	, Oi	DF	Ougl
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Resul			Qual
Benzene	ND	5.0	1		Tert-Butyl Alcoh		ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth		ND	10	1	
n/m-Xylene	ND	5.0	1		Tert-Amyl-Methy	yl Ether (TAME		10	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC (%	Limits		Qual
Dibromofluoromethane	104	75-141			1,2-Dichloroetha		101	73-151		
Toluene-d8	97	87-111			1,4-Bromofluoro	benzene	90	71-113		
B3-10			05-03-1	497-9	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Resul	t RL	<u>DF</u>	Qual
Benzene	`ND	5.0	1		Tert-Butyl Alcoh	nol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	, ,	ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Eth		ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			10	1	
o-Xylene	ND	5.0	1		Ethanol	• `	ND	250	1	
, , , , , , , , ,	ND	5.0	1							
Methyl-t-Butyl Ether (MTRE)		Control		Qual	Surrogates:		REC (S			<u>Qual</u>
•	<u>REC (%)</u>							Limits		
Methyl-t-Butyl Ether (MTBE) Surrogates: Dibromofluoromethane	<u>REC (%)</u> 99	<u>Limits</u> 75-141			1.2-Dichloroeth	ane-d4	99	73-151		

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units:

05-03-1497 EPA 5030B EPA 8260B

03/23/05

ug/kg

Project: MB Industries / 383-01

Page 4 of 10

Client Sample Number				ab Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
B3-15			05-03-1	497-10	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Resul	RL.	DF	Qual
Benzene	ND	5.0	1		Tert-Butyl Alcoh	nol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	er (DIPE)	ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Eth	ner (ETBE)	ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	yl Ether (TAM	E) ND	10	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control	·	Qual	Surrogates:		REC (9	6) <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	97	<u>Limits</u> 75-141			1,2-Dichloroetha	ane-d4	98	73-151		
Toluene-d8	98	87-111			1,4-Bromofluoro	obenzene	89	71-113		
B4-5			05-03-1	497-11	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	RL	DF	Qual	Parameter		Resul	t RL	DF	Qual
Benzene	ND	5.0	1		Tert-Butyl Alcoh	nol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	• •	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth	, ,	ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	, ,		10	1	
	ND	5.0	1		Ethanol	yı Ethor (17 av.	ND ND	250	1	
o-Xylene		5.0 5.0	1		Lulario		ND	200	•	
Methyl-t-Butyl Ether (MTBE)	ND REC (%)	Control	•	Qual	Surrogates:		REC (%) Control		Qual
Surrogates:	REC (70)	Limits	•	Quai	<u>ourrogates.</u>		in the second	<u>Limits</u>		
Dibromofluoromethane	99	75-141			1,2-Dichloroeth	ane-d4	100	73-151		
Toluene-d8	98	87-111			1,4-Bromofluore	obenzene	89	71-113		
B4-10	4.		05-03-1	497-12	03/22/05	Solid	03/26/05	03/26/05	05032	26L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Resu	t RL	<u>DF</u>	Qual
Benzene	ND	5.0		·	Tert-Butyl Alcol	hol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Et		ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			10	1	
o-Xylene	ND	5.0	1		Ethanol	• •	ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
• • •	REC (%)	Control	· -	<u>Qual</u>	Surrogates:		REC (%) <u>Control</u> <u>Limits</u>		Qual
Surrogates:								LIIIII		
Surrogates: Dibromofluoromethane	104	<u>Limits</u> 75-141			1,2-Dichloroeth	ane-d4	104	73-151		

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units:

03/23/05 05-03-1497 **EPA 5030B EPA 8260B**

ug/kg

Page 5 of 10

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared A	Date nalyzed	QC B	atch ID
B4-15			05-03-14	197-13	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	RL	DF	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	5.0	1		Tert-Butyl Alcoho	l (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ether	(DIPE)	ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Ethe		ND	10	1	
/m-Xylene	ND	5.0	1		Tert-Amyl-Methyl	Ether (TAME) ND	10	1	
-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits	·	Qual	Surrogates:		REC (%	Control Limits		Qual
Dibromofluoromethane	100	75-141			1,2-Dichloroethar	ne-d4	100	73-151		
Foluene-d8	98	87-111			1,4-Bromofluorob	enzene	89	71-113		
B5-5			05-03-14	497-14	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	RL	DF	Qual	Parameter		Result	RL	DF	Qual
Parameter		5.0	<u> </u>	<u>Quui</u>	Tert-Butyl Alcoho	J (TRA)	ND	50	1	
Benzene	ND				Diisopropyl Ether		ND	10	1	
thylbenzene	ND	5.0	1		Ethyl-t-Butyl Ethe		ND	10	1	-
Toluene	ND	5.0	1		•			10	1	
/m-Xylene	ND	5.0	1		Tert-Amyl-Methyl	I Ether (TAME	ND	250	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	'	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	01	O		REC (%) Control		Qual
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:		KEC (7	Limits		Quai
Dibromofluoromethane	105	75-141			1,2-Dichloroetha	ne-d4	108	73-151		
Toluene-d8	98	87-111			1,4-Bromofluorob	penzene	91	71-113		
B5-10			05-03-1	497-15	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	RL	DF	Qual	Parameter		Resul	RL	DF	<u>Qual</u>
Benzene	ND.	5.0	1		Tert-Butyl Alcoho	ol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ether		ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Ethe		ND	10	1	
n/m-Xylene	ND	5.0	1		Tert-Amyl-Methy	• •		10	1	
o-Xylene	ND	5.0	1		Ethanol	,	ND	250	1	
_	ND	5.0	1							
Apthyl_t_Kiityi Finar iki i KF i	–	Control		Qual	Surrogates:		REC (9	6) <u>Control</u> Limits		<u>Qual</u>
	<u>REC (%)</u>							FILING		
Methyl-t-Butyl Ether (MTBE) Surrogates: Dibromofluoromethane	108	<u>Limits</u> 75-141			1.2-Dichloroetha	ne-d4	109	73-151		

DF - Dilution Factor ,

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715

Project: MR Industries / 383-01

Date Received: Work Order No: Preparation: Method:

05-03-1497 **EPA 5030B EPA 8260B**

03/23/05

ug/kg

Units:

Page 6 of 10

Project: MB industries	/ 383-01								raye	0 01 10
Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC B	atch ID
B5-12			05-03-14	197-16	03/22/05	Solid	03/26/05	03/26/05	05032	6L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resu	it RL	<u>DF</u>	<u>Qual</u>
Benzene	ND	5.0	1		Tert-Butyl Alcol	hol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	er (DIPE)	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Et	her (ETBE)	ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	nyl Ether (TAM	E) ND	10	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		REC (%) <u>Control</u> <u>Limits</u>		<u>Qual</u>
Dibromofluoromethane	105	75-141			1,2-Dichloroeth	ane-d4	106	73-151		
Toluene-d8	98	87-111			1,4-Bromofluor	obenzene	89	71-113		
B5-14			05-03-14	197-17	03/22/05	Solid	03/26/05	03/27/05	05032	6L03
Parameter	Result	RL	<u>DF</u>	Qual	Parameter		Resu	ilt RL	DF	Qual
Benzene	ND	5.0	<u> </u>	3,000	Tert-Butyl Alco	hol (TBA)	ND	 50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth		ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Et	, ,	ND	10	1	
p/m-Xylene	ND	5.0 5.0	1		Tert-Amyl-Meth			10	1	
o-Xylene	ND ND	5.0	1		Ethanol	131 22107 (17 110	ND	250	1	
•	ND	5.0	1		Luidiloi		110	200	•	
Methyl-t-Butyl Ether (MTBE) <u>Surrogates:</u>	REC (%)	Control		Qual	Surrogates:		REC (%) <u>Control</u> Limits		<u>Qual</u>
Dibromofluoromethane	106	<u>Limits</u> 75-141			1.2-Dichloroeth	nane-d4	107	73-151		
Toluene-d8	98	87-111			1,4-Bromofluor		89	71-113		
B6-8	90	07-111	05-03-14	497-18	03/22/05	Solid	03/26/05	03/27/05	05032	26L04
			D.F.	0	Danamatas		Resi	ılt RL	DE	Qual
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter	hal /TDA\				
Benzene	ND	500	100		Tert-Butyl Alco	. ,	ND	5000	100	-
Ethylbenzene	15000	500	100		Diisopropyl Eth		ND	1000	100	
Toluene	6700	500	100		Ethyl-t-Butyl Et		ND ND	1000	10	
p/m-Xylene	71000	500	100		Tert-Amyl-Metl	nyı ⊨tner (IAM	•	1000	10	
o-Xylene	17000	500	100		Ethanol		ND	25000	10	J
•		500	100							O = 1
Methyl-t-Butyl Ether (MTBE)	ND	500		_						
•	ND REC (%)	Control Limits		<u>Qual</u>	Surrogates:		REC	<u>Limits</u>		Qual
Methyl-t-Butyl Ether (MTBE)		Control		<u>Qual</u>	Surrogates: 1,2-Dichloroett 1,4-Bromofluor		REC 101 96			Quai

DF - Dilution Factor ,

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units:

03/23/05 05-03-1497 **EPA 5030B EPA 8260B**

ug/kg

Page 7 of 10

Project: MB Industries / 383-01

Client Sample Number				b Sample Number	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
B6-10			05-03-14	197-19	03/22/05	Solid	03/26/05	03/27/05	050326	BL03
Parameter	Result	RL	DF	Qual	Parameter		Resu	ilt RL	<u>DF</u>	Qual
Benzene	110	5	1		Tert-Butyl Alcoh	ol (TBA)	ND	50	1	
Ethylbenzene	260	5	1		Diisopropyl Ethe	er (DIPE)	ND	10	1	
Toluene	76	5	1		Ethyl-t-Butyl Eth	ner (ETBE)	ND	10	1	
p/m-Xylene	1200	5	1		Tert-Amyl-Meth	yl Ether (TAMI	E) ND	10	1	
o-Xylene	470	5	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:		REC (%) Control Limits		<u>Qual</u>
Dibromofluoromethane	98	75-141			1,2-Dichloroetha	ane-d4	99	73-151		
Toluene-d8	98	87-111			1,4-Bromofluoro	benzene	96	71-113		
B6-15			05-03-1	497-20	03/22/05	Solid	03/26/05	03/27/05	050320	BL03

B6-15			05-03-1	497-20	03/22/05	Solid	03/26/05	03/27/05	050326L	.03
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>		Result	RL	DF	Qual
Benzene	ND	5.0	1		Tert-Butyl Alcol	hol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Eth	er (DIPE)	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Etl	her (ETBE)	ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Meth	yl Ether (TAME) ND	10	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		REC (%)	Control <u>Limits</u>	<u>C</u>	Qual
Dibromofluoromethane	100	75-141			1,2-Dichloroeth	ane-d4	103	73-151		
Toluene-d8	97	87-111			1,4-Bromofluor	obenzene	91	71-113		
B7-5			05-03-1	497-21	03/22/05	Solid	03/26/05	03/27/05	0503261	L 03

Parameter	Result	RL	DF	Qual	Parameter	Result	RL	<u>DF</u>	Qual
Benzene	ND.	5.0	1		Tert-Butyl Alcohol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ether (DIPE)	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Ether (ETBE)	ND	10	1	
p/m-Xylene	ND	5.0	1		Tert-Amyl-Methyl Ether (TAME)	ND	10	1	
o-Xylene	ND	5.0	1		Ethanol	ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1						
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:	REC (%)	Control Limits		Qual
Dibromofluoromethane	105	75-141			1,2-Dichloroethane-d4	108	73-151		
Toluene-d8	97	87-111			1,4-Bromofluorobenzene	90	71-113		

B7-5

DF - Dilution Factor , Qual - Qualifiers

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units:

05-03-1497 **EPA 5030B EPA 8260B**

03/23/05

ug/kg

Project: MB Industries			1 -6	Comple	Data		Date	Date		
Client Sample Number				Sample umber	Date Collected	Matrix		Analyzed	QC B	atch ID
B7-10	-		05-03-149	97-22	03/22/05	Solid	03/26/05	03/27/05	05032	6L03
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Resul	t RL	<u>DF</u>	Qual
Benzene	25	5	1		Tert-Butyl Alcoh	ol (TBA)	N.D	50	1	
Ethylbenzene	67	5	1		Diisopropyl Ethe	er (DIPE)	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth	er (ETBE)	ND	10	1	
o/m-Xylene	310	5	1		Tert-Amyl-Methy	/I Ether (TAME) ND	10	1	
-Xylene	130	5	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:		REC (9	6) <u>Control</u> Limits		Qual
Dibromofluoromethane	105	75-141			1,2-Dichloroetha	ane-d4	107	73-151		
Toluene-d8	96	87-111			1,4-Bromofluoro	benzene	95	71-113		
B7-15			05-03-149	97-23	03/22/05	Solid	03/26/05	03/27/05	05032	6L03
		<u> </u>		0 1	D		Deaul	4 DI	DF	Qual
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>	. (70.4)	Resul	_		Quai
Benzene	ND	5.0	1		Tert-Butyl Alcoh		ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	•	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Eth	, ,	ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Methy	yl Ether (TAME	•	10	1	
o-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:		REC (S	%) <u>Control</u> <u>Limits</u>		Qual
Dibromofluoromethane	102	75-141			1,2-Dichloroetha	ane-d4	106	73-151		
Foluene-d8	98	87-111			1,4-Bromofluoro	benzene	89	71-113		
Method Blank			099-10-00	05-10,110	N/A	Solid	03/24/05	03/24/05	05032	4L01
Parameter	Result	RL	DF	Qual	Parameter		Resu	t RL	DF	Qual
Benzene	ND	5.0			Tert-Butyl Alcoh	ol (TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ethe	· ·	ND	10	1	
Foluene	ND	5.0	1		Ethyl-t-Butyl Eth		ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Meth			10	1	
o-Xvlene	ND	5.0	1		Ethanol	•	ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1						-	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	REC (%)	Control		Qual	Surrogates:		REC (<u>Qual</u>
Surrogates:	1120 (70)	Limite						Limis		
Surrogates: Dibromofluoromethane	101	<u>Limits</u> 75-141			1,2-Dichloroetha	ane-d4	108	<u>Limits</u> 73-151		

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units:

05-03-1497 **EPA 5030B EPA 8260B**

03/23/05

ug/kg

Olis and Ossessale Moseshare				Sample	Date	Matrix	Date Proposed	Date Analyzed	QC B	atch ID
Client Sample Number				mber	Collected					
Method Blank		<u>.</u>	099-10-005	-10,118	N/A	Solid	03/26/05	03/26/05	05032	BL01
Parameter Parame	Result	<u>RL</u>	DF C	<u>Qual</u>	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	5.0	1		Tert-Butyl Alcohol	(TBA)	ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ether	(DIPE)	ND	10	1	
Toluene	ND	5.0	1		Ethyl-t-Butyl Ethe	r (ETBE)	ND	10	1	
o/m-Xylene	ND	5.0	1		Tert-Amyl-Methyl	Ether (TAME) ND	10	1	
-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits	<u>Q</u>	<u>Qual</u>	Surrogates:		<u>REC (%</u>	<u>Control</u> Limits		Qual
Dibromofluoromethane	101	75-141			1,2-Dichloroethan	e-d4	101	73-151		
Toluene-d8	96	87-111			1,4-Bromofluorob		91	71-113		
Method Blank			099-10-005	-10,122	N/A	Solid	03/26/05	03/27/05	05032	6L03
					_		5	D:	DE .	01
<u>Parameter</u>	Result	<u>RL</u>			<u>Parameter</u>		Result		DF	<u>Qual</u>
Benzene	ND	5.0	1		Tert-Butyl Alcoho		ND	50	1	
Ethylbenzene	ND	5.0	1		Diisopropyl Ether		ND	10	1	
oluene	ND	5.0	1		Ethyl-t-Butyl Ethe	r (ETBE)	ND	10	1	
/m-Xylene	ND	5.0	1		Tert-Amyl-Methyl	Ether (TAME) ND	10	1	
-Xylene	ND	5.0	1		Ethanol		ND	250	1	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1							
Surrogates:	REC (%)	Control Limits	<u> </u>	<u>Qual</u>	Surrogates:		REC (%	<u>Control</u> <u>Limits</u>		<u>Qual</u>
Dibromofluoromethane	106	75-141			1,2-Dichloroethan	e-d4	107	73-151		
Foluene-d8	98	87-111			1,4-Bromofluorob	enzene	91	71-113		
Method Blank			099-10-005	-10,123	N/A	Solid	03/26/05	03/26/05	05032	6L02
Parameter	Result	RL	DF 9	Qual	Parameter		Resul	RL	DF	Qual
Benzene	ND	130	25		Tert-Butyl Alcoho	(TBA)	ND.	1300	25	
Ethylbenzene	ND	130	25 25		Diisopropyl Ether	, ,	ND	250	25	
Foluene	ND ND	130	25 25		Ethyl-t-Butyl Ethe	` '	ND	250	25	
o/m-Xylene	ND ND	130	25 25		Tert-Amyl-Methyl			250	25	
•		130	25 25		Ethanol	Ediei (17dvie	.) ND	6300	25	
-Xylene	ND	130	25 25		Luidillo		ND	0300	20	
Methyl-t-Butyl Ether (MTBE)	ND PEC (%)			Yual	Surrogates:		REC (%	6) Control		Qual
Surrogates:	<u>REC (%)</u>	Control Limits	. <u>u</u>		Surrogates:		NEC (7	<u>Limits</u>		<u>wuai</u>
Dibromofluoromethane	97	75-141			1,2-Dichloroethar	ne-d4	97	73-151		
Toluene-d8	98	87-111			1.4-Bromofluorob		92	71-113		

DF - Dilution Factor ,

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: Units:

05-03-1497 EPA 5030B EPA 8260B

03/23/05

ug/kg

Project: MB Industries / 383-01

Page 10 of 10

Client Sample Number				Sample umber	Date Collected	Matrix	Date Prepared	Date Analyzed	QC Ba	tch ID
Method Blank			099-10-00	5-10,124	N/A	Solid	03/26/05	03/27/05	050320	SL04
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter		Resul	t RL	<u>DF</u>	Qual
Benzene	ND	130	25		Tert-Butyl Alcoho	ol (TBA)	ND	1300	25	,
Ethylbenzene	ND	130	25		Diisopropyl Ethe	r (DIPE)	ND	250	25	
Toluene	ND	130	25		Ethyl-t-Butyl Eth	er (ETBE)	ND	250	25	
p/m-Xylene	ND	130	25		Tert-Amyl-Methy	I Ether (TAME	E) ND	250	25	
o-Xylene	ND	130	25		Ethanol		ND	6300	25	
Methyl-t-Butyl Ether (MTBE)	ND	130	25							
Surrogates:	REC (%)	Control Limits	. !	<u>Qual</u>	Surrogates:		REC (S	<u>%) Control</u> <u>Limits</u>		<u>Qual</u>
Dibromofluoromethane	100	75-141			1,2-Dichloroetha	ne-d4	98	73-151		
Toluene-d8	98	87-111			1,4-Bromofluoro	benzene	91	71-113		

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: 03/23/05 05-03-1497 EPA 5030B DHS LUFT

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
B1-12	Solid	GC 11	03/25/05		03/25/05	050325801	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
TPH as Gasoline	94	93	66-108	1	0-18		

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc.

2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No:

Preparation:

Method:

03/23/05

05-03-1497

EPA 5030B

DHS LUFT

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	MS/MSD Batch Number
B7-15	Solid	GC 11	03/26/05	03/2	26/05	050326S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	86	89	66-108	3	0-18	

E alscience **E** nvironmental **L** aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: 03/23/05 05-03-1497 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
05-03-1437-9	Solid	GC/MS X	03/24/05		03/24/05	050324801	
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	83	93	78-114	11	0-14		
Carbon Tetrachloride	92	103	48-138	12	0-20		
Chlorobenzene	89	101	77-107	13	0-17		
1,2-Dichlorobenzene	88	101	62-110	14	0-25		
1,1-Dichloroethene	83	87	73-127	5	0-21		
Toluene	87	97	74-116	10	0-16		
Trichloroethene	117	136	74-122	15	0-17	3	
Vinyl Chloride	101	107	67-121	6	0-23		
Methyl-t-Butyl Ether (MTBE)	83	96	69-123	14	0-18		
Tert-Butyl Alcohol (TBA)	81	94	53-125	15	0-25		
Diisopropyl Ether (DIPE)	86	99	71-119	15	0-22		
Ethyl-t-Butyl Ether (ETBE)	85	98	73-121	14	0-16		
Tert-Amyl-Methyl Ether (TAME)	86	99	75-117	14	0-14		
Ethanol	98	100	45-135	2	0-29		

C alscience E nvironmental L aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: 03/23/05 05-03-1497 EPA 5030B

EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
B2-15	Solid	GC/MS W	03/26/05		03/26/05	050326801
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	94	98	78-114	4	0-14	
Carbon Tetrachloride	103	115	48-138	11	0-20	
Chlorobenzene	98	104	77-107	6	0-17	

Benzene	94	98	78-114	4	0-14	
Carbon Tetrachloride	103	115	48-138	11	0-20	
Chlorobenzene	98	104	77-107	6	0-17	
1,2-Dichlorobenzene	98	106	62-110	8	0-25	
1,1-Dichloroethene	93	97	73-127	4	0-21	
Toluene	92	96	74-116	5	0-16	
Trichloroethene	97	102	74-122	5	0-17	
Vinyl Chloride	101	100	67-121	1	0-23	
Methyl-t-Butyl Ether (MTBE)	91	95	69-123	5	0-18	
Tert-Butyl Alcohol (TBA)	108	121	53-125	11	0-25	
Diisopropyl Ether (DIPE)	94	97	71-119	4	0-22	
Ethyl-t-Butyl Ether (ETBE)	91	96	73-121	5	0-16	
Tert-Amyl-Methyl Ether (TAME)	92	98	75-117	6	0-14	
Ethanol	90	94	45-135	4	0-29	

alscience nvironmental aboratories, Inc.

Quality Control - Spike/Spike Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation:

03/23/05 05-03-1497 EPA 5030B

Method:

EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	,	Date Analyzed	MS/MSD Batch Number
B7-15	Solid	GC/MS W	03/26/05		03/27/05	050326802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CI	Qualifiers
Benzene	97	93	78-114	4	0-14	
Carbon Tetrachloride	102	110	48-138	8	0-20	
Chlorobenzene	99	91	77-107	8	0-17	
1,2-Dichlorobenzene	98	84	62-110	16	0-25	
1,1-Dichloroethene	96	97	73-127	1	0-21	
Toluene	94	88	74-116	6	0-16	
Trichloroethene	113	104	74-122	9	0-17	
Vinyl Chloride	102	101	67-121	1	0-23	
Methyl-t-Butyl Ether (MTBE)	89	92	69-123	3	0-18	
Tert-Butyl Alcohol (TBA)	95	104	53-125	9	0-25	
Diisopropyl Ether (DIPE)	95	95	71-119	1	0-22	
Ethyl-t-Butyl Ether (ETBE)	91	93	73-121	2	0-16	
Tert-Amyl-Methyl Ether (TAME)	94	92	75-117	1	0-14	
Ethanol	86	91	45-135	6	0-29	

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation:

Method:

05-03-1497 EPA 5030B DHS LUFT

N/A

Quality Control Sample ID	Matrix	Instrur	_	ate oared	Dat Analy	-	LCS/LCSD Bate Number	:h
098-03-008-5,338	Solid	GC 1	11 03/2	:6/05	03/26/	05	050326B02	
<u>Parameter</u>	LCS	%REC	LCSD %REC	<u>%RI</u>	EC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	98		99	70)-118	1	0-28	

Calscience Invironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: N/A 05-03-1497 EPA 5030B DHS LUFT

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File II) I	_CS Batch Number
098-03-008-5,336	Solid	GC 11	03/25/05	003F0301		050325B01
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
TPH as Gasoline		10	9.7	97	70-118	

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: N/A 05-03-1497 EPA 5030B DHS LUFT

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	d	LCS/LCSD Batc Number	h
098-03-008-5,337	Solid	GC 11	03/26/05	03/26/05	3	050326B01	
<u>Parameter</u>	LCS S	%REC LCSD	%REC 9	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	94	98		70-118	4	0-28	

E alscience **E** nvironmental **aboratories**, Inc.

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation:

05-03-1497 EPA 5030B

N/A

Method:

EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	ch
099-10-005-10,110	Solid	GC/MS X	03/24/05	03/2	4/05	050324L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	REC CL	RPD	RPD CL	Qualifiers
Benzene	101	102		84-114	2	0-7	
Carbon Tetrachloride	112	114		69-135	1	0-13	
Chlorobenzene	104	108		85-109	4	0-8	
1,2-Dichlorobenzene	109	114		80-110	5	0-10	X
1,1-Dichloroethene	94	96		83-125	2	0-10	
Toluene	101	105		79-115	4	0-8	
Trichloroethene	101	107		87-111	5	0-7	
Vinyl Chloride	90	90		72-126	0	0-10	
Methyl-t-Butyl Ether (MTBE)	109	110		75-129	1	0-13	
Tert-Butyl Alcohol (TBA)	103	102		66-126	1	0-24	
Diisopropyl Ether (DIPE)	112	113		77-125	1	0-13	
Ethyl-t-Butyl Ether (ETBE)	110	112		72-132	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	113	114		77-125	1	0-10	
Ethanol	105	80		50-134	27	0-23	X

E alscience E nvironmental L aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715

Date Received: Work Order No: Preparation: Method: N/A 05-03-1497 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate yzed	LCS/LCSD Bate Number	ch
099-10-005-10,118	Solid	GC/MS W	03/26/05	03/2	6/05	050326L01	,
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	REC CL	RPD	RPD CL	Qualifiers
Benzene	94	96		84-114	2	0-7	
Carbon Tetrachloride	103	111		69-135	7	0-13	
Chlorobenzene	100	101		85-109	0	0-8	
1,2-Dichlorobenzene	103	105		80-110	2	0-10	
1,1-Dichloroethene	95	92		83-125	2	0-10	
Toluene	93	95		79-115	2	0-8	
Trichloroethene	94	95		87-111	1	0-7	
Vinyl Chloride	103	96		72-126	7	0-10	
Methyl-t-Butyl Ether (MTBE)	93	94		75-129	2	0-13	
Tert-Butyl Alcohol (TBA)	104	112		66-126	8	0-24	
Diisopropyl Ether (DIPE)	94	97		77-125	2	0-13	
Ethyl-t-Butyl Ether (ETBE)	93	94		72-132	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	97		77-125	3	0-10	
Ethanol	88	92		50-134	4	0-23	

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: N/A 05-03-1497 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix I	nstrument	Date Prepared		ate lyzed	LCS/LCSD Bate Number	h
099-10-005-10,123	Solid (GC/MS W	03/26/05	03/2	6/05	050326L02	
<u>Parameter</u>	LCS %REC	C LCSD %	REC %	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	94	96		84-114	2	0-7	
Carbon Tetrachloride	103	111		69-135	7	0-13	
Chlorobenzene	100	101		85-109	0	0-8	
1,2-Dichlorobenzene	103	105		80-110	2	0-10	
1,1-Dichloroethene	95	92		83-125	2	0-10	
Toluene	93	95		79-115	2	0-8	
Trichloroethene	94	95		87-111	1	0-7	
Vinyl Chloride	103	96		72-126	7	0-10	
Methyl-t-Butyl Ether (MTBE)	93	94		75-129	2	0-13	
Tert-Butyl Alcohol (TBA)	104	112		66-126	8	0-24	
Diisopropyl Ether (DIPE)	94	97		77-125	2	0-13	
Ethyl-t-Butyl Ether (ETBE)	93	94		72-132	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	94	97		77-125	3	0-10	
Ethanol	88	92		50-134	4	0-23	

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715

Date Received: Work Order No: Preparation:

05-03-1497 EPA 5030B

N/A

Method:

EPA 8260B

Quality Control Sample ID	Matrix lı	nstrument	Date Prepared		ate lyzed	LCS/LCSD Bat Number	ch
099-10-005-10,122	Solid G	C/MS W	03/26/05	03/2	7/05	050326L03	
Doromotor	1.00 W.BEO	1.000 %	DEC %	REC CL	RPD	RPD CL	Qualifiers
Parameter	LCS %REC	LCSD %	REC 7	REC CL	KPD	KFDCL	Quainers
Benzene	96	98		84-114	1	0-7	
Carbon Tetrachloride	112	118		69-135	5	0-13	
Chlorobenzene	101	101		85-109	1	0-8	
1,2-Dichlorobenzene	103	104		80-110	1	0-10	
1,1-Dichloroethene	94	96		83-125	2	0-10	
Toluene	95	95		79-115	1	0-8	
Trichloroethene	97	98		87-111	1	0-7	
Vinyl Chloride	102	102		72-126	1	0-10	
Methyl-t-Butyl Ether (MTBE)	92	94		75-129	2	0-13	
Tert-Butyl Alcohol (TBA)	106	114		66-126	6	0-24	
Diisopropyl Ether (DIPE)	97	98		77-125	1	0-13	
Ethyl-t-Butyl Ether (ETBE)	94	95		72-132	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	95	97		77-125	2	0-10	
Ethanol	96	94		50-134	3	0-23	

alscience nvironmental aboratories, Inc.

Quality Control - LCS/LCS Duplicate

Frey Environmental, Inc. 2817-A Lafayette Avenue Newport Beach, CA 92663-3715 Date Received: Work Order No: Preparation: Method: N/A 05-03-1497 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrum	nent	Date Prepared		ate lyzed	LCS/LCSD Bate Number	:h
099-10-005-10,124	Solid	GC/MS	W	03/26/05	03/2	7/05	050326L04	
<u>Parameter</u>	LCS %	<u>%REC</u>	LCSD %RI	EC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	96		98		84-114	1	0-7	
Carbon Tetrachloride	112	2	118		69-135	5	0-13	
Chlorobenzene	101	1	101		85-109	1	0-8	
1,2-Dichlorobenzene	103	3	104		80-110	1	0-10	
1,1-Dichloroethene	94		96		83-125	2	0-10	
Toluene	95		95		79-115	1	0-8	
Trichloroethene	97		98		87-111	1	0-7	
Vinyl Chloride	102	2	102		72-126	1	0-10	
Methyl-t-Butyl Ether (MTBE)	92		94		75-129	2	0-13	
Tert-Butyl Alcohol (TBA)	106	3	114		66-126	6	0-24	
Diisopropyl Ether (DIPE)	97		98		77-125	1	0-13	
Ethyl-t-Butyl Ether (ETBE)	94		95		72-132	1	0-12	
Tert-Amyl-Methyl Ether (TAME)	95		97		77-125	2	0-10	
Ethanol	96		94		50-134	3	0-23	

Glossary of Terms and Qualifiers

Work Order Number: 05-03-1497

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike or Matrix Spike Duplicate compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
×	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

09/10/01 Revision 2:50

Time:

n

Ø

Time:

CALSCIENCE ENVINCINMENTAL LABORATORIES, INC. 7440 LINCOLN WAY

GARDEN GROVE, CA 92841-1432

CHAIN OF CUSTODY RECORD

12/05

Date_

3

₹

COOLER RECEIP 23-23-05 20-57-60 REQUESTED ANALYSES P.O. NO. CAC, T22 METALS (6010B) Date: Date: Date: EDB \ DBCb (204.1) or (8011) COELT LOG CODE PCBs (8082) Page (A1808) T239 NIB Thoughties SVOCs (8270C) CLIENT PROJECT NAME / NUMBER VOCs (5035 / 8260B) EnCore Noclar **VOCs (8560B)** SAMPLER(S): (SIGNATURE) BTEX / OXYGENATES (8260B) PROJECT CONTACT: HALOCARBONS (8021B) (Stanature) (81208) BTEX / MTBE 383-01 10 (O) H9T Received for Laboratory by (a) Hat Received by: (Signature) Signa ₹ 9 SONT. 92663-3715 @freyinc.com Received by/ ☐ 10 DAYS MATRIX Ŕ 1.1 11:28 1:01 TO:01 15:01 10:01 9:56 11:18 3/12/05 9:50 10:0 MER SAMPLING X 5 DAYS + marke daying .com DATE E-MAIL: Analyze by \$2608 and if 80x18 Lad ☐ 72 HR FREY ENVIRONMENTAL, INC. 2817-A LAFAYETTE AVENUE KI COELT REPORTING SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) SAMPLE ID TEL: (714) 895-5494 • FAX: (714) 894-7501 949/723-1854 ☐ 48 HR **NEWPORT BEACH** 83-15 81-10 187-15 82-W 13-5 33-10 32-5 31-5 4-18 131-13 251085090 Relinquished by: (Signature) ☐ 24 HR Relinquished by/(Signature) **Sonature** ☐ RWQCB REPORTING **GEIMS ID** 949/723-1645 T CO SPECIAL INSTRUCTIONS: LABORATORY CLIENT TURNAROUND TIME SAME DAY Mar. Relinquis ADDRESS 띹

VOCs (TO-14A) or (TO-15)

(01E8) **2NM**

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow ago PMk copies respectively. DISTRIBUTION: White with final report, Green to File, Yellow and Pink to Client.

CALSCIENCE ENVINCHMEN I AL LABORATORIES, INC.

CHAIN OF CUSTODY RECORD

₹

Page

740 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

LABORATORY CLIENT:					CLIENT	CLIENT PROJECT NAME / NUMBER:	NAME /	NUMBE	ä		Ī	P.O. NO.:			
	FREY ENVIRONMENTAL, INC.				MR	7	. }	12/2	702-07						
ZESS:	2817-A LAFAYETTE AVENUE				PROJEC	PROJECT CONTACT:	3 5		3		83.233	0.88	Z	USE CNLY	
CITY	STATE		7 0000	ZIP	Jak	MOEL	とうしる	57.					- ज	7 7	+
TEL: FAX			61/5-50076	2	SAMPLE	©//	NATURE	_	COELT	COELT LOG CODE	ما	COOLER RECEIPT	ER REC		
949/723-1645	949/723-1854		@freyinc.com	E					b			TEMP +			9
DENNAROUND TIME:	□ 48 HR □ 72 HR 🔀	S DAYS	To DAYS	' 0			Z	EQU.	REQUESTED		NAL	ANALYSES	S		
MENTS (ADDITIONS)							(80	ə			(1				
2	L COELI REPORTING										101	(8	(9		
SPECIAL INSTRUCTIONS:	methe Oday inc, con			, <u></u>		(8021B)	8) S∃T/	08) EvC		-	8) or (£	0109) S	er-ot)		
T0605901972						(80) 3 SNC									
	/ / alone /. /		1												
NZC.	be \$2108 and it such actes	ts certify	135												
	Ci a iday e	SAMPLING) Hd			OCs OCs	200	TSE SBS			VAS		
CEIMS ID		DATE	TIME MAINT	CONT.											
	84-5 3/216.	7	1:39 80:11	1	メ	メ	X								
	0-42		/ Sh: //			-									
	134-15	~	11:52												
	35-5	10,21	/6												
	18-10	7/	12:07									_			
	85-12	PI.CI	<i>h</i> .					_							
	H5-14	//	12.19												
	8-98	7/	/2,0/												
	86-10	10:32	32												
	81-15	10:39	30	人 一	}	4	7								
Relinquished by: (Signature)			Received by: (Signatur	: (Signati	<u>\$</u>			'	ì		Date:		!	Time:	
P					5	7		2	246		03-	-23	3	12:0	û
Relinquished by: (Signature)	0.		Received by: (Signature)	: (Signati	Je j						Dat Dat	×		Time:	
Relinquished by: (Signature)		,	Received for Laboratory by: (Signatu	r Laborat	ory by: (S	gnature	0	R	(7	Date:	23	-05	Time: /2 : 5 6	0.
DISTRIBUTION: Whi	DISTRIBUTION: White with final report, Green to File, Yellow and Pink to Client. Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink Cepter respectively.	v and Pink t	Client.	ellow and	Pink capi	respec	lively.	Į.		<u>}</u>	1			09/10/01 Revision	5

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink copies respectively.

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

CHAIN OF CUSTODY RECORD

3/12/05

Date_

7

ŏ

Page

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

09/10/01 Revision 0 0 12 Time: ine: COOLER RECEIPT VOCs (TO-14A) or (TO-15) 03-23-05 P.O. NO.: REQUESTED ANALYSES (01£8) sANG 62-60 CAC, T22 METALS (6010B) Date: EDB / DBCb (204:1) or (8011) 2 COELT LOG CODE PCBs (8082) 回回也 (A1808) T239 383-01 SVOCs (8270C) E CLIENT PROJECT NAME / NUMBER VOCs (5035 / 8260B) EnCore MOSCLER **NOCs (8500B)** SAMPLER(S): (SIGNATURE) MB Incustries BTEX / OXYGENATES (8260B) PROJECT CONTACT: HALOCARBONS (8021B) HOOL (81208) BATM \ X3T8 10 (Q) H9T Received for Laboratory by (a) H9T Received by: (Signature) Received by: (Signature) NO.OF CONT 92663-3715 @freyinc.com ☐ 10 DAYS MATRIX في DISTRIBETION: White with final report, Green to File, Yellow and Pink to Client. ALTBE 9:39 2219 Jedeal TIME 9.3 SAMPLING S DAYS DATE 4 make Coleying, con E-MAIL: ☐ 72 HR by 82608 only if 9021B FREY ENVIRONMENTAL, INC. 2817-A LAFAYETTE AVENUE COELT REPORTING SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) SAMPLE ID 949/723-1854 **NEWPORT BEACH** □ 48 H 35 37-5 31-15 37-10 0605901872 ☐ 24 HR Relinquished by: (Signature) by:////glanature) Relinquished by: (Signature ☐ RWQCB REPORTING EDF GEIMS ID 949/723-1645 SPECIAL INSTRUCTIONS: LABORATORY CLIENT URNAROUND TIME: SAME DAY Ore:/ Relinquist ADDRESS () () () () () 핕

WORK ORDER #:

05-01-149

Cooler ______ of ________ **SAMPLE RECEIPT FORM**

CLIENT: FREY	DATE: 03/23/05
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. 2-7 °C Temperature blank.	LABORATORY (Other than Calscience Courier): °C Temperature blank. °C IR thermometer. Ambient temperature.
	TOTAL CONTRACTOR OF THE PARTY O
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not Intact)	: Not Applicable (N/A): Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers for analyses requested. Proper preservation noted on sample label(s). VOA vial(s) free of headspace. Tedlar bag(s) free of condensation.	
COMMENTS:	

APPENDIX D

ESTIMATED MASS OF PETROLEUM HYDROCARBONS BENEATH THE SITE

SOIL HYDROCARBON MASS ESTIMATE 16808 SOUTH HARBOR BOULEVARD, CA

Estimated area of impacted soil [1]: 455 square feet Average thickness of impacted soil: 5 feet **Est. Impacted Volume:** 2,275 cubic feet 84.26 cubic yards Arithmetic average of reported TPH values in estimated volume (mg/kg)[2]: 15.44 mg/kg Soil bulk density (assumed): 0.0017 kg/cm3 Using the equation: Mass (lbs) = (Average Soil Concentration [mg/kg]) x (Soil Bulk Density [kg/cm3]) x (28317 cm3/ft3) x (Soil Volume [ft3]) x (1 kg/1,000,000 mg) x (1 lb/0.4536 kg)

3.73

1.69

0.62

Pounds

Gallons

Kilograms

1 kg = 2.2 lbs.

1 gallon gasoline = 6 lbs

Notes:

Mass of TPH in soil volume [2]:

- 1) The area of impacted soil is based on the attached estimated extent of TPH concentrations in soil. The area was calculated by modelling the areal extent as a rectangle with a length of 35 feet and a width of 13 feet.
- 2.) The arithmetic average of reported TPH values is based on laboratory analytical data from soil samples collected between 5 and 10 feet bgs. Average TPH concentrations are assumed to be distributed evenly throughout estimated cell of impacted soil.
- 3.) Soil bulk density is an assumed value based on silt as primary soil type (Das, Braja M.; Principles of Geotechnical Engineering, Second Edition, 1990)